Definition of Linearity

Definition of Linearity

Definition of Linearity

If

Definition of Linearity

If

Definition of Linearity

If

then for any scaling factors α and β,

Definition of Linearity

If

then for any scaling factors α and β,

Definition of Linearity

If

then for any scaling factors α and β,

$$
A(\alpha \mathbf{x}+\beta \tilde{\mathbf{x}})=\alpha A(\mathbf{x})+\beta A(\tilde{\mathbf{x}})
$$

1. Which (one or more) of the following relationships between $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and y represents a linear transformation $\mathbf{R}^{3} \rightarrow \mathbf{R}$?
A. $y=x_{1}+x_{2}+x_{3}$
B. $\quad y= \begin{cases}x_{1}, & x_{1} \geq 0 \\ 0, & x_{1}<0\end{cases}$
C. y equals the length of the vector x
D. y equals the cosine of the angle between the vector x and the vector $(1,1,1)$
2. Which (one or more) of the following relationships between $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and y represents a linear transformation $\mathbf{R}^{3} \rightarrow \mathbf{R}$?
A. $y=x_{1}+x_{2}+x_{3}$
B. $\quad y= \begin{cases}x_{1}, & x_{1} \geq 0 \\ 0, & x_{1}<0\end{cases}$
C. y equals the length of the vector \mathbf{x}
D. y equals the cosine of the angle between the vector \mathbf{x} and the vector $(1,1,1)$

Vector Notation

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)
$$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}
$$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \Rightarrow \quad \mathbf{a}^{T}=\left[\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \Rightarrow \quad \mathbf{a}^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

Standard unit vectors in \mathbb{R}^{n} and \mathbb{C}^{n} :

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \Rightarrow \quad \mathbf{a}^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

Standard unit vectors in \mathbb{R}^{n} and $\mathbb{C}^{n}: \mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(n)}$

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \Rightarrow \quad \mathbf{a}^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

Standard unit vectors in \mathbb{R}^{n} and $\mathbb{C}^{n}: \mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(n)}$, where

Vector Notation

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \quad\left(\text { or } \mathbb{C}^{n}\right)
$$

Use () if the orientation (row or column) is unimportant.
In expressions involving products of matrices and vectors,

- a will always be a column vector
- row vectors will be denoted using the transpose T :

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \Rightarrow \quad \mathbf{a}^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]
$$

Standard unit vectors in \mathbb{R}^{n} and $\mathbb{C}^{n}: \mathbf{e}^{(1)}, \ldots, \mathbf{e}^{(n)}$, where

$$
e_{i}^{(k)}= \begin{cases}1, & i=k \\ 0, & i \neq k\end{cases}
$$

Matrix of a Linear Transformation $A(\cdot)$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity,

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

$$
A(\mathrm{x})=
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

$$
A(\mathbf{x})=x_{1} A\left(\mathbf{e}^{(1)}\right)+x_{2} A\left(\mathbf{e}^{(2)}\right)+\cdots+x_{n} A\left(\mathbf{e}^{(n)}\right)
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

$$
A(\mathbf{x})=x_{1} A\left(\mathbf{e}^{(1)}\right)+x_{2} A\left(\mathbf{e}^{(2)}\right)+\cdots+x_{n} A\left(\mathbf{e}^{(n)}\right)
$$

Matrix of $A(\cdot)$:

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

$$
A(\mathbf{x})=x_{1} A\left(\mathbf{e}^{(1)}\right)+x_{2} A\left(\mathbf{e}^{(2)}\right)+\cdots+x_{n} A\left(\mathbf{e}^{(n)}\right)
$$

Matrix of $A(\cdot)$:

$$
\mathbf{A}=\left[\begin{array}{llll}
A\left(\mathbf{e}^{(1)}\right) & A\left(\mathbf{e}^{(2)}\right) & \ldots & A\left(\mathbf{e}^{(n)}\right)
\end{array}\right]
$$

Matrix of a Linear Transformation $A(\cdot)$

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Express the input vector as

$$
\mathbf{x}=x_{1} \mathbf{e}^{(1)}+x_{2} \mathbf{e}^{(2)}+\cdots+x_{n} \mathbf{e}^{(n)}
$$

Then by linearity, the output vector will be

$$
A(\mathbf{x})=x_{1} A\left(\mathbf{e}^{(1)}\right)+x_{2} A\left(\mathbf{e}^{(2)}\right)+\cdots+x_{n} A\left(\mathbf{e}^{(n)}\right)
$$

Matrix of $A(\cdot)$:

$$
\mathbf{A}=\left[\begin{array}{llll}
A\left(\mathbf{e}^{(1)}\right) & A\left(\mathbf{e}^{(2)}\right) & \ldots & A\left(\mathbf{e}^{(n)}\right)
\end{array}\right]
$$

$$
\mathbf{A} \in \mathbb{R}^{m \times n}
$$

2. Let A be the linear transformation $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ such that

$$
A\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, 2 x_{1}, x_{2}\right)
$$

What is the matrix \mathbf{A} of this transformation?

Matrix-Vector Product

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
For $\mathrm{x} \in \mathbb{R}^{n \times 1}$,

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
For $\mathbf{x} \in \mathbb{R}^{n \times 1}$,

$$
\mathbf{A} \mathbf{x} \stackrel{\text { def }}{=} A(\mathbf{x})=x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+\cdots+x_{n} \mathbf{a}^{(n)}
$$

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
For $\mathbf{x} \in \mathbb{R}^{n \times 1}$,

$$
\mathbf{A} \mathbf{x} \stackrel{\text { def }}{=} A(\mathbf{x})=x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+\cdots+x_{n} \mathbf{a}^{(n)}
$$

Equivalently:

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
For $\mathbf{x} \in \mathbb{R}^{n \times 1}$,

$$
\mathbf{A} \mathbf{x} \stackrel{\text { def }}{=} A(\mathbf{x})=x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+\cdots+x_{n} \mathbf{a}^{(n)}
$$

Equivalently:

$$
(\mathbf{A x})_{i}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right)^{\downarrow} \cdot \mathbf{x}
$$

Matrix-Vector Product

Every $m \times n$ matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}^{(1)} & \mathbf{a}^{(2)} & \ldots & \mathbf{a}^{(n)}
\end{array}\right]
$$

represents a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
For $\mathbf{x} \in \mathbb{R}^{n \times 1}$,

$$
\mathbf{A} \mathbf{x} \stackrel{\text { def }}{=} A(\mathbf{x})=x_{1} \mathbf{a}^{(1)}+x_{2} \mathbf{a}^{(2)}+\cdots+x_{n} \mathbf{a}^{(n)}
$$

Equivalently:

$$
(\mathbf{A x})_{i}=\left(i^{\text {th }} \text { row of } \mathbf{A}\right) \stackrel{\downarrow}{\downarrow} \mathbf{x}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

4. If

$$
\mathbf{A}=\left[\begin{array}{rrr}
5 & -2 & 1 \\
3 & 0 & 4
\end{array}\right] \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{r}
2 \\
7 \\
-1
\end{array}\right]
$$

then $\mathbf{A x}=$

Rotation Matrix

Rotation Matrix

$$
\rightarrow \theta
$$

Rotation Matrix

$\rightarrow \theta$

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

3. Which of the following transformations $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, described in geometric terms, does the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

represent?
A. Projection of a point on the horizontal $\left(x_{1}\right)$ axis
B. Projection of a point on the vertical $\left(x_{2}\right)$ axis
C. Counterclockwise rotation of a vector (from the origin to a point) by $\pi / 2$ radians
D. Reflection of a point about the straight line which bisects the first and third quadrants
3. Which of the following transformations $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, described in geometric terms, does the matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

represent?
A. Projection of a point on the horizontal $\left(x_{1}\right)$ axis
B. Projection of a point on the vertical $\left(x_{2}\right)$ axis
C. Counterclockwise rotation of a vector (from the origin to a point) by $\pi / 2$ radians
D. Reflection of a point about the straight line which bisects the first and third quadrants
5. If

$$
\mathbf{A}\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\mathbf{u} \quad \text { and } \quad \mathbf{A}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\mathbf{v}
$$

then the first column of \mathbf{A} is given by the vector
A. $u+v$
B. $u-v$
C. $2 u+3 v$
D. $u-2 v$
6. If

$$
\mathbf{A}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

which (one or more) of the following statements are correct?
A. The dimensions of \mathbf{A} cannot be determined based on the given information.
B. A is a 3×3 matrix.
C. The second column of \mathbf{A} is given by $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{T}$.
D. The entries of the third column of \mathbf{A} cannot be determined based on the given information.
6. If

$$
\mathbf{A}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

which (one or more) of the following statements are correct?
A. The dimensions of \mathbf{A} cannot be determined based on the given information.
B. \mathbf{A} is a 3×3 matrix.
C. The second column of \mathbf{A} is given by $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{T}$.
D. The entries of the third column of \mathbf{A} cannot be determined based on the given information.
6. If

$$
\mathbf{A}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right] \quad \text { and } \quad \mathbf{A}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

which (one or more) of the following statements are correct?
A. The dimensions of \mathbf{A} cannot be determined based on the given information.
B. \mathbf{A} is a 3×3 matrix.
C. The second column of \mathbf{A} is given by $\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{T}$.
D. The entries of the third column of \mathbf{A} cannot be determined based on the given information.

See also example in L7.2 7

