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3 and 4 (previous worksheet) x(t) = 3 cos(Ωt+ φ) is plotted below (in black).
The stem plot (in blue) is the sequence of samples x[n] = x(nTs).
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5 (previous worksheet) Let

x(t) = cos(200πt+ 1.7) ,

where t is in seconds. For which (one or more) of the following values of Ts is the
sample sequence x[n] = x(nTs) given by the equation

x[n] = cos(0.7πn− 1.7) ?

A. 3.5 ms

B. 6.5 ms

C. 13.5 ms

D. 16.5 ms



Sampling and Interpolation (Analog � Digital)

0  t

x(t)

0

 2  n−1   1

x(t)

• Analog signal x(t) can be represented as the sum of sinusoids. The frequencies
(f , in Hz) of those sinusoids comprise the spectrum of x(t).

• Reconstruction of x(t) from its samples x[n] is impossible if two frequencies f
and f ′ in that spectrum map to the same value of ω (rad/sample) in x[n].
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The Alias Concept

Definition. Two analog (continuous-time) frequencies f and f ′ are aliases with
respect to sampling rate fs if the resulting sinusoidal samples can be expressed
using the same value of ω.

In other words,

f ′ = ±f + kfs

(The two analog frequencies f and f ′ are indistinguishable based on the samples
obtained.)
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The Alias Concept

Definition. Two analog (continuous-time) frequencies f and f ′ are aliases with
respect to sampling rate fs if the resulting sinusoidal samples can be expressed
using the same value of ω.

In other words,

f ′ = ±f + kfs

(The two analog frequencies f and f ′ are indistinguishable based on the samples
obtained.)



1. Which (one or more) of the following frequencies (in Hz) are aliases of
f = 70 Hz when the sampling rate equals fs = 500 samples per second?

A. 430

B. 570

C. 630

D. 770



Aliases: Graphical Illustration

Mapping f → ω : ω = 2π(f/fs)

fs /20 fs  (Hz)

Identical sample sequences are obtained if

• f and f ′ have the same mark (• or ×)and the analog sinusoids have the same
initial phase

• f and f ′ have different marksand the analog sinusoids have initial phases
differing in sign (only).
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2. What is the highest sampling rate fs such that f and 7f (both positive
frequencies) are aliases of each other?

A. fs = f

B. fs = 6f

C. fs = 8f

D. fs = 12f



3. The discrete-time sinusoid

x[n] = cos(0.28πn− 1.7)

has been obtained by sampling a continuous-time sinusoid x(t) at times t = nTs,
where fs = 1/Ts = 500 samples/sec. If the frequency f of x(t) is known to lie in
the range [500, 750] Hz, then

A. x(t) = cos(1120πt− 1.7)

B. x(t) = cos(1140πt− 1.7)

C. x(t) = cos(1120πt+ 1.7)

D. x(t) = cos(1140πt+ 1.7)



4. Once again, the discrete-time sinusoid

x[n] = cos(0.28πn− 1.7)

has been obtained by sampling a continuous-time sinusoid x(t) at times t = nTs,
where fs = 1/Ts = 500 samples/sec. If the frequency f of x(t) is known to lie in
the range [750, 1000] Hz, then

A. x(t) = cos(1640πt− 1.7)

B. x(t) = cos(1860πt− 1.7)

C. x(t) = cos(1640πt+ 1.7)

D. x(t) = cos(1860πt+ 1.7)



Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies
which are aliases with respect to the sampling rate.

If f1 and f2 form such a pair, then the contribution of

A1 cos(2πf1t+ φ1) +A2 cos(2πf2t+ φ2)

to the nth sample will be of the form

A1 cos(ωn+ φ1) +A2 cos(ωn± φ2) = A cos(ωn+ φ)

⇒ Information about the individual analog components is lost,
⇒ and the analog signal cannot be reconstructed from its samples.
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5. Which (if any) of the following continuous-time signals x(t) produce

x(nTs) = x[n] = 7 cos(0.2πn)

when fs = 1/Ts = 50 samples/sec?

A. x(t) = 3 cos(10πt) + 4 cos(190πt)

B. x(t) = cos(10πt) + 6 cos(40πt)

C. x(t) = 2 cos(80πt) + 5 cos(120πt)

D. x(t) = 6 cos(90πt) + cos(110πt)
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