Sampling $x(t)=A \cos (\Omega t+\phi)$

Sampling $x(t)=A \cos (\Omega t+\phi)$


Sampling $x(t)=A \cos (\Omega t+\phi)$


Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

Sampling $x(t)=A \cos (\Omega t+\phi)$

where

Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

$\omega$ can be set to any value in $[0, \pi]$ by choice of $T_{s}$

Sampling $x(t)=A \cos (\Omega t+\phi)$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

$\omega$ can be set to any value in $[0, \pi]$ by choice of $T_{s}$

Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

$\omega$ can be set to any value in $[0, \pi]$ by choice of $T_{s}$

Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

$\omega$ can be set to any value in $[0, \pi]$ by choice of $T_{s}$

Sampling $x(t)=A \cos (\Omega t+\phi)$


$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=2 \pi \cdot \frac{T_{s}}{T}=2 \pi \cdot \frac{f}{f_{s}}
$$

$\omega$ can be set to any value in $[0, \pi]$ by choice of $T_{s}$

3 and 4 (previous worksheet) $x(t)=3 \cos (\Omega t+\phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n]=x\left(n T_{s}\right)$.


3 and 4 (previous worksheet) $x(t)=3 \cos (\Omega t+\phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n]=x\left(n T_{s}\right)$.


Write an equation for $x[n]$ that contains neither $\Omega$ nor $T_{s}$.

5 (previous worksheet) Let

$$
x(t)=\cos (200 \pi t+1.7),
$$

where $t$ is in seconds. For which (one or more) of the following values of $T_{s}$ is the sample sequence $x[n]=x\left(n T_{s}\right)$ given by the equation

$$
x[n]=\cos (0.7 \pi n-1.7) ?
$$

A. $\quad 3.5 \mathrm{~ms}$
B. $\quad 6.5 \mathrm{~ms}$
C. $\quad 13.5 \mathrm{~ms}$
D. $\quad 16.5 \mathrm{~ms}$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


$$
x(t) \longrightarrow \mathrm{A} / \mathrm{D}
$$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


$$
x(t) \longrightarrow \mathrm{A} / \mathrm{D} \longrightarrow x[n]
$$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


$$
x(t) \longrightarrow \mathrm{A} / \mathrm{D} \longrightarrow x[n] \longrightarrow \mathrm{D} / \mathrm{A}
$$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


$$
x(t) \longrightarrow \mathrm{A} / \mathrm{D} \longrightarrow x[n] \longrightarrow \mathrm{D} / \mathrm{A}
$$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


$$
x(t) \longrightarrow \mathrm{A} / \mathrm{D} \longrightarrow x[n] \longrightarrow \mathrm{D} / \mathrm{A} \longrightarrow x(t)
$$

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


- Analog signal $x(t)$ can be represented as a sum of sinusoids.

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


- Analog signal $x(t)$ can be represented as a sum of sinusoids. The frequencies ( $f$, in Hz ) of those sinusoids comprise the spectrum of $x(t)$.


## Sampling and Interpolation (Analog $\rightleftarrows$ Digital)



- Analog signal $x(t)$ can be represented as a sum of sinusoids. The frequencies ( $f$, in Hz ) of those sinusoids comprise the spectrum of $x(t)$.
- Reconstruction of $x(t)$ from its samples $x[n]$ is impossible

Sampling and Interpolation (Analog $\rightleftarrows$ Digital)


- Analog signal $x(t)$ can be represented as a sum of sinusoids. The frequencies ( $f$, in Hz ) of those sinusoids comprise the spectrum of $x(t)$.
- Reconstruction of $x(t)$ from its samples $x[n]$ is impossible if two frequencies $f$ and $f^{\prime}$ in that spectrum


## Sampling and Interpolation (Analog $\rightleftarrows$ Digital)



- Analog signal $x(t)$ can be represented as a sum of sinusoids. The frequencies ( $f$, in Hz ) of those sinusoids comprise the spectrum of $x(t)$.
- Reconstruction of $x(t)$ from its samples $x[n]$ is impossible if two frequencies $f$ and $f^{\prime}$ in that spectrum map to the same value of $\omega$ (rad/sample) in $x[n]$.

The Alias Concept

The Alias Concept

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases with respect to sampling rate $f_{s}$

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases with respect to sampling rate $f_{s}$ if the resulting sinusoidal samples can be expressed using the same value of $\omega$.

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases with respect to sampling rate $f_{s}$ if the resulting sinusoidal samples can be expressed using the same value of $\omega$.

In other words,

## The Alias Concept

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases with respect to sampling rate $f_{s}$ if the resulting sinusoidal samples can be expressed using the same value of $\omega$.

In other words,

$$
f^{\prime}= \pm f+k f_{s}
$$

## The Alias Concept

Definition. Two analog (continuous-time) frequencies $f$ and $f^{\prime}$ are aliases with respect to sampling rate $f_{s}$ if the resulting sinusoidal samples can be expressed using the same value of $\omega$.

In other words,

$$
f^{\prime}= \pm f+k f_{s}
$$

(The two analog frequencies $f$ and $f^{\prime}$ are indistinguishable based on the samples obtained.)

1. Which (one or more) of the following frequencies (in Hz ) are aliases of $f=70 \mathrm{~Hz}$ when the sampling rate equals $f_{s}=500$ samples per second?
A. 430
B. 570
C. 630
D. 770

## Aliases: Graphical Illustration

## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$

## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

- $f$ and $f^{\prime}$ have the same mark ( - or $\times$ )


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

- $f$ and $f^{\prime}$ have the same mark ( or $\times$ ) and the analog sinusoids have the same initial phase


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

- $f$ and $f^{\prime}$ have the same mark ( or $\times$ ) and the analog sinusoids have the same initial phase; or


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

- $f$ and $f^{\prime}$ have the same mark (• or $\times$ ) and the analog sinusoids have the same initial phase; or
- $f$ and $f^{\prime}$ have different marks


## Aliases: Graphical Illustration

Mapping $f \rightarrow \omega: \quad \omega=2 \pi\left(f / f_{s}\right)$


Identical sample sequences are obtained if

- $f$ and $f^{\prime}$ have the same mark (• or $\times$ ) and the analog sinusoids have the same initial phase; or
- $f$ and $f^{\prime}$ have different marks and the analog sinusoids have initial phases differing in sign (only).

2. What is the highest sampling rate $f_{s}$ such that $f$ and $7 f$ (both positive frequencies) are aliases of each other?
A. $\quad f_{s}=f$
B. $f_{s}=6 f$
C. $f_{s}=8 f$
D. $f_{s}=12 f$
3. The discrete-time sinusoid

$$
x[n]=\cos (0.28 \pi n-1.7)
$$

has been obtained by sampling a continuous-time sinusoid $x(t)$ at times $t=n T_{s}$, where $f_{s}=1 / T_{s}=500$ samples $/ \mathrm{sec}$. If the frequency $f$ of $x(t)$ is known to lie in the range $[500,750] \mathrm{Hz}$, then
A. $x(t)=\cos (1120 \pi t-1.7)$
B. $x(t)=\cos (1140 \pi t-1.7)$
C. $x(t)=\cos (1120 \pi t+1.7)$
D. $x(t)=\cos (1140 \pi t+1.7)$
4. Once again, the discrete-time sinusoid

$$
x[n]=\cos (0.28 \pi n-1.7)
$$

has been obtained by sampling a continuous-time sinusoid $x(t)$ at times $t=n T_{s}$, where $f_{s}=1 / T_{s}=500$ samples $/ \mathrm{sec}$. If the frequency $f$ of $x(t)$ is known to lie in the range $[750,1000] \mathrm{Hz}$, then
A. $x(t)=\cos (1640 \pi t-1.7)$
B. $x(t)=\cos (1860 \pi t-1.7)$
C. $x(t)=\cos (1640 \pi t+1.7)$
D. $x(t)=\cos (1860 \pi t+1.7)$

Aliasing

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair,

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

to the $n^{\text {th }}$ sample

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

to the $n^{\text {th }}$ sample will be of the form

$$
A_{1} \cos \left(\omega n+\phi_{1}\right)+A_{2} \cos \left(\omega n \pm \phi_{2}\right)
$$

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

to the $n^{\text {th }}$ sample will be of the form

$$
A_{1} \cos \left(\omega n+\phi_{1}\right)+A_{2} \cos \left(\omega n \pm \phi_{2}\right)=A \cos (\omega n+\phi)
$$

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

to the $n^{\text {th }}$ sample will be of the form

$$
A_{1} \cos \left(\omega n+\phi_{1}\right)+A_{2} \cos \left(\omega n \pm \phi_{2}\right)=A \cos (\omega n+\phi)
$$

$\Rightarrow$ Information about the individual analog components is lost

## Aliasing

Occurs when an analog signal has sinusoidal components at pairs of frequencies which are aliases with respect to the sampling rate.

If $f_{1}$ and $f_{2}$ form such a pair, then the contribution of

$$
A_{1} \cos \left(2 \pi f_{1} t+\phi_{1}\right)+A_{2} \cos \left(2 \pi f_{2} t+\phi_{2}\right)
$$

to the $n^{\text {th }}$ sample will be of the form

$$
A_{1} \cos \left(\omega n+\phi_{1}\right)+A_{2} \cos \left(\omega n \pm \phi_{2}\right)=A \cos (\omega n+\phi)
$$

$\Rightarrow$ Information about the individual analog components is lost, and the analog signal cannot be reconstructed from its samples.
5. Which (if any) of the following continuous-time signals $x(t)$ produce

$$
x\left(n T_{s}\right)=x[n]=7 \cos (0.2 \pi n)
$$

when $f_{s}=1 / T_{s}=50$ samples $/ \mathrm{sec}$ ?
A. $x(t)=3 \cos (10 \pi t)+4 \cos (190 \pi t)$
B. $x(t)=\cos (10 \pi t)+6 \cos (40 \pi t)$
C. $x(t)=2 \cos (80 \pi t)+5 \cos (120 \pi t)$
D. $x(t)=6 \cos (90 \pi t)+\cos (110 \pi t)$
5. Which (if any) of the following continuous-time signals $x(t)$ produce

$$
x\left(n T_{s}\right)=x[n]=7 \cos (0.2 \pi n)
$$

when $f_{s}=1 / T_{s}=50$ samples $/ \mathrm{sec}$ ?
A. $\quad x(t)=3 \cos (10 \pi t)+4 \cos (190 \pi t)$
B. $x(t)=\cos (10 \pi t)+6 \cos (40 \pi t)$
C. $x(t)=2 \cos (80 \pi t)+5 \cos (120 \pi t)$
D. $x(t)=6 \cos (90 \pi t)+\cos (110 \pi t)$

Nyquist Sampling Rate

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

$$
f_{s}>2 f_{B}
$$

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

$$
f_{s}>2 f_{B}
$$

$0 \quad f_{s} / 2 \quad f_{s}(\mathrm{~Hz})$

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

$$
\begin{array}{lll}
\frac{f_{s}>2 f_{B}}{} \\
f_{s} / 2 & f_{s} & \\
0 & (\mathrm{~Hz}) \\
0 & \pi & 2 \pi \\
& \\
& \\
& (\mathrm{rad} / \text { sample })
\end{array}
$$

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).


## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

$$
\begin{aligned}
& f_{s}>2 f_{B}
\end{aligned}
$$

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).


## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

NO ALIASING

$$
f_{s}>2 f_{B}
$$




## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).


## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

NO ALIASING

$$
f_{s}>2 f_{B}
$$




## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).
NO ALIASING
$f_{S}>2 f_{B}$



## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).
NO ALIASING
$f_{S}>2 f_{B}$



## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).
NO ALIASING
$f_{S}>2 f_{B}$



## Nyquist Sampling Rate

Suppose that $x(t)$ is bandlimited with bandwidth $f_{B}(\mathrm{~Hz})$.
Then aliasing can be avoided if $f_{s}>2 f_{B}$ (Nyquist rate).

NO ALIASING

$$
f_{s}>2 f_{B}
$$



ALIASING
$f_{s}<2 f_{B}$


