

• Notation: x[n] versus x(t)

- Notation: x[n] versus x(t)
- Typically:

- Notation: x[n] versus x(t)
- Typically: $x[\cdot]$ is vector

- Notation: x[n] versus x(t)
- Typically: $x[\,\cdot\,]$ is vector or a two-sided sequence $(n\in\mathbb{Z})$

 $x[n] \ = \ A\cos(\omega n + \phi) \,, \qquad n \in \mathbb{Z}$

$$x[n] = A\cos(\omega n + \phi), \quad n \in \mathbb{Z}$$

$$x[n] = A\cos(\omega n + \phi), \quad n \in \mathbb{Z}$$

Frequency parameter ω :

• is in units of radians (per sample, not second)

$$x[n] = A\cos(\omega n + \phi), \quad n \in \mathbb{Z}$$

- is in units of radians (per sample, not second)
- is an angle increment

$$x[n] = A\cos(\omega n + \phi), \quad n \in \mathbb{Z}$$

- is in units of radians (per sample, not second)
- is an angle increment

$$x[n] = A\cos(\omega n + \phi), \quad n \in \mathbb{Z}$$

- is in units of radians (per sample, not second)
- is an angle increment

1. How many distinct values does the discrete-time sinusoid

$$x[n] = \cos\left(\frac{\pi n}{4}\right)$$

take as n ranges over all integers (positive and negative)?

- A. Four
- B. Five
- C. Six

D. Eight

A sequence $x[\,\cdot\,]$ is periodic with period L samples if

A sequence $x[\,\cdot\,]$ is periodic with period L samples if

$$x[n+L] = x[n] \qquad (all n)$$

A sequence $x[\,\cdot\,]$ is periodic with period L samples if

$$x[n+L] = x[n] \qquad (all n)$$

• Fundamental period

A sequence $x[\cdot]$ is periodic with period L samples if

$$x[n+L] = x[n] \qquad (all n)$$

• Fundamental period: smallest value of L for which above holds.

A sequence $x[\cdot]$ is periodic with period L samples if

$$x[n+L] = x[n] \qquad (all n)$$

• Fundamental period: smallest value of L for which above holds.

• Periodicity of
$$x[n] = \cos(\omega n + \phi)$$
:

A sequence $x[\cdot]$ is periodic with period L samples if

$$x[n+L] = x[n] \qquad (all n)$$

- Fundamental period: smallest value of L for which above holds.
- Periodicity of $x[n] = \cos(\omega n + \phi)$: depends on the value of ω .

angle covered in L time instants = whole number of cycles

angle covered in L time instants = whole number of cycles

 $\omega L = k \cdot 2\pi$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4}$$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi$$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

Periodicity of $\cos(\omega n + \phi)$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Reduced fraction $k/L \Rightarrow$ fundamental period = L

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

Periodicity of $\cos(\omega n + \phi)$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Reduced fraction $k/L \Rightarrow$ fundamental period = L

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

Periodicity of $\cos(\omega n + \phi)$

angle covered in L time instants = whole number of cycles

$$\omega L = k \cdot 2\pi$$
$$\omega = \frac{k}{L} \cdot 2\pi$$

Reduced fraction $k/L \Rightarrow$ fundamental period = L

Example:
$$\omega = \frac{3\pi}{4} = \frac{3}{8} \cdot 2\pi \Rightarrow L = 8$$
 samples

2. Shown below is a bar plot of the discrete-time sinusoid $\cos(\omega n + \phi)$. Which of the following values of ω is most consistent with this plot?

A. $4\pi/7$ B. $5\pi/7$ C. $4\pi/9$ D. $5\pi/9$

• Unlike Ω (rad/sec),

• Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid),

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

- Unlike Ω (rad/sec), ω (rad) is limited to $[0, 2\pi)$.
- For $x[n] = \cos(\omega n + \phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$\cos(\omega n + \phi) = \cos(-\omega n - \phi)$$
$$= \cos((2\pi - \omega)n - \phi)$$

• $T_s = \text{sampling period (sec)}$

- T_s = sampling period (sec)
- $f_s = 1/T_s = \text{ sampling rate (samples/sec)}$

- $T_s = \text{sampling period (sec)}$
- $f_s = 1/T_s = \text{ sampling rate (samples/sec)}$

Sample sequence x[n] is given by

$$x[n] = x(nT_s) \qquad (all n)$$

$$x[n] = x(nT_s) = A\cos(\omega n + \phi)$$

$$x[n] = x(nT_s) = A\cos(\omega n + \phi)$$

where

$$\omega = \Omega T_s = 2\pi \cdot \frac{T_s}{T}$$

3 and **4**. The continuous-time sinusoid $x(t) = 3\cos(\Omega t + \phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n] = x(nT_s)$.

3 and **4**. The continuous-time sinusoid $x(t) = 3\cos(\Omega t + \phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n] = x(nT_s)$.

Write an equation for x[n] that contains neither Ω nor T_s .

5. Let

$$x(t) = \cos(200\pi t + 1.7) ,$$

where t is in seconds. For which (one or more) of the following values of T_s is the sample sequence $x[n] = x(nT_s)$ given by the equation

$$x[n] = \cos(0.7\pi n - 1.7)$$
?

- **A**. 3.5 ms
- **B**. 6.5 ms
- **C**. 13.5 ms
- **D**. 16.5 ms