Discrete-Parameter Signals

Discrete-Parameter Signals

Discrete-Parameter Signals

- Notation: $x[n]$ versus $x(t)$

Discrete-Parameter Signals

- Notation: $x[n]$ versus $x(t)$
- Typically:

Discrete-Parameter Signals

- Notation: $x[n]$ versus $x(t)$
- Typically: $x[\cdot]$ is vector

Discrete-Parameter Signals

- Notation: $x[n]$ versus $x(t)$
- Typically: $x[\cdot]$ is vector or a two-sided sequence $(n \in \mathbb{Z})$

General Discrete-Time Sinusoid

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

Frequency parameter ω :

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

Frequency parameter ω :

- is in units of radians (per sample, not second)

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

Frequency parameter ω :

- is in units of radians (per sample, not second)
- is an angle increment

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

Frequency parameter ω :

- is in units of radians (per sample, not second)
- is an angle increment

$$
\omega=0
$$

General Discrete-Time Sinusoid

$$
x[n]=A \cos (\omega n+\phi), \quad n \in \mathbb{Z}
$$

Frequency parameter ω :

- is in units of radians (per sample, not second)
- is an angle increment

$$
\omega=0
$$

$$
\omega=\pi
$$

1. How many distinct values does the discrete-time sinusoid

$$
x[n]=\cos \left(\frac{\pi n}{4}\right)
$$

take as n ranges over all integers (positive and negative)?
A. Four
B. Five
C. Six
D. Eight

Periodicity

Periodicity

$$
\begin{aligned}
& x[n]
\end{aligned}
$$

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

$$
x[n+L]=x[n] \quad(\text { all } n)
$$

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

$$
x[n+L]=x[n] \quad(\text { all } n)
$$

- Fundamental period

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

$$
x[n+L]=x[n] \quad(\text { all } n)
$$

- Fundamental period: smallest value of L for which above holds.

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

$$
x[n+L]=x[n] \quad(\text { all } n)
$$

- Fundamental period: smallest value of L for which above holds.
- Periodicity of $x[n]=\cos (\omega n+\phi)$:

Periodicity

A sequence $x[\cdot]$ is periodic with period L samples if

$$
x[n+L]=x[n] \quad(\text { all } n)
$$

- Fundamental period: smallest value of L for which above holds.
- Periodicity of $x[n]=\cos (\omega n+\phi)$: depends on the value of ω.

Periodicity of $\cos (\omega n+\phi)$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\omega L=k \cdot 2 \pi
$$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi$

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

Periodicity of $\cos (\omega n+\phi)$

angle covered in L time instants $=$ whole number of cycles

$$
\begin{aligned}
\omega L & =k \cdot 2 \pi \\
\omega & =\frac{k}{L} \cdot 2 \pi
\end{aligned}
$$

Reduced fraction $k / L \Rightarrow$ fundamental period $=L$
Example: $\quad \omega=\frac{3 \pi}{4}=\frac{3}{8} \cdot 2 \pi \quad \Rightarrow \quad L=8$ samples

2. Shown below is a bar plot of the discrete-time sinusoid $\cos (\omega n+\phi)$. Which of the following values of ω is most consistent with this plot?

A. $4 \pi / 7$
B. $5 \pi / 7$
C. $4 \pi / 9$
D. $5 \pi / 9$

Effective Range of ω

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec})$,

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid),

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Effective Range of ω

- Unlike $\Omega(\mathrm{rad} / \mathrm{sec}), \omega(\mathrm{rad})$ is limited to $[0,2 \pi)$.
- For $x[n]=\cos (\omega n+\phi)$ (real sinusoid), ω is further limited to $[0, \pi]$:

$$
\begin{aligned}
\cos (\omega n+\phi) & =\cos (-\omega n-\phi) \\
& =\cos ((2 \pi-\omega) n-\phi)
\end{aligned}
$$

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

Sampling of Continuous-Time Signals

- $\quad T_{s}=$ sampling period (sec)

Sampling of Continuous-Time Signals

- $\quad T_{s}=$ sampling period (sec)
- $\quad f_{s}=1 / T_{s}=$ sampling rate (samples $/ \mathrm{sec}$)

Sampling of Continuous-Time Signals

- $\quad T_{s}=$ sampling period (sec)
- $f_{s}=1 / T_{s}=$ sampling rate (samples $/ \mathrm{sec}$)

Sample sequence $x[n]$ is given by

$$
x[n]=x\left(n T_{s}\right) \quad(\text { all } n)
$$

Sampling $x(t)=A \cos (\Omega t+\phi)$

Sampling $x(t)=A \cos (\Omega t+\phi)$

Sampling $x(t)=A \cos (\Omega t+\phi)$

Sampling $x(t)=A \cos (\Omega t+\phi)$

$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

Sampling $x(t)=A \cos (\Omega t+\phi)$

$$
x[n]=x\left(n T_{s}\right)=A \cos (\omega n+\phi)
$$

where

$$
\omega=\Omega T_{s}=2 \pi \cdot \frac{T_{s}}{T}
$$

3 and 4. The continuous-time sinusoid $x(t)=3 \cos (\Omega t+\phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n]=x\left(n T_{s}\right)$.

3 and 4. The continuous-time sinusoid $x(t)=3 \cos (\Omega t+\phi)$ is plotted below (in black). The stem plot (in blue) is the sequence of samples $x[n]=x\left(n T_{s}\right)$.

Write an equation for $x[n]$ that contains neither Ω nor T_{s}.
5. Let

$$
x(t)=\cos (200 \pi t+1.7)
$$

where t is in seconds. For which (one or more) of the following values of T_{s} is the sample sequence $x[n]=x\left(n T_{s}\right)$ given by the equation

$$
x[n]=\cos (0.7 \pi n-1.7) ?
$$

A. $\quad 3.5 \mathrm{~ms}$
B. $\quad 6.5 \mathrm{~ms}$
C. $\quad 13.5 \mathrm{~ms}$
D. 16.5 ms

