$$|z_1 z_2| = |z_1| \cdot |z_2|$$

$$|z_1z_2| = |z_1| \cdot |z_2|$$
 and $\angle z_1z_2 = \angle z_1 + \angle z_2$

The product z_1z_2 is defined by

$$|z_1z_2|=|z_1|\cdot|z_2|$$
 and $\angle z_1z_2=\angle z_1+\angle z_2$

• $z_1 z_2 = z_2 z_1$

The product z_1z_2 is defined by

$$|z_1z_2|=|z_1|\cdot|z_2|$$
 and $\angle z_1z_2=\angle z_1+\angle z_2$

• $z_1 z_2 = z_2 z_1$ (Commutativity)

$$|z_1z_2| = |z_1| \cdot |z_2|$$
 and $\angle z_1z_2 = \angle z_1 + \angle z_2$

- $z_1z_2 = z_2z_1$ (Commutativity)
- If |w| = 1 and z is arbitrary,

$$|z_1z_2|=|z_1|\cdot|z_2|$$
 and $\angle z_1z_2=\angle z_1+\angle z_2$

- $z_1 z_2 = z_2 z_1$ (Commutativity)
- If |w| = 1 and z is arbitrary, then

$$|wz| = |z|$$
 and $\angle wz = \angle w + \angle z$

The product z_1z_2 is defined by

$$|z_1z_2|=|z_1|\cdot|z_2|$$
 and $\angle z_1z_2=\angle z_1+\angle z_2$

- $z_1 z_2 = z_2 z_1$ (Commutativity)
- If |w| = 1 and z is arbitrary, then

$$|wz| = |z|$$
 and $\angle wz = \angle w + \angle z$

(Vector of z is rotated by angle of w.)

3. If

- ullet z_1 has modulus 1 and angle $-\pi/3$; and
- ullet z_2 has modulus 2 and angle $\pi/12$,

then z_1z_2 equals

- **A**. 2
- B. -2j
- $\mathsf{C.} \qquad \sqrt{2} + j\sqrt{2}$
- $D. \qquad \sqrt{2} j\sqrt{2}$

4. If $\angle z = 3\pi/7$, for which (one or more) of the following choices of n is z^n real-valued?

A. n = 28

B. n = 17

C. n = 3

D. n = 35

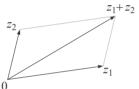
4. If $\angle z = 3\pi/7$, for which (one or more) of the following choices of n is z^n real-valued?

A. n = 28

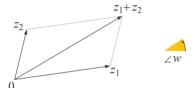
B. n = 17

C. n=3

D. n = 35

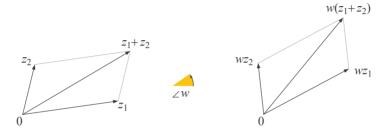


 $\mathsf{Assume}\ |w|=1.$



Assume |w| = 1.

Assume |w|=1.



$$w(z_1+z_2) = wz_1+wz_2$$

Assume |w| = 1.

$$w(z_1 + z_2) = wz_1 + wz_2$$

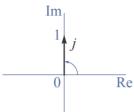
 $aw(z_1 + z_2) = awz_1 + awz_2 (a \ge 0)$

Assume |w| = 1.

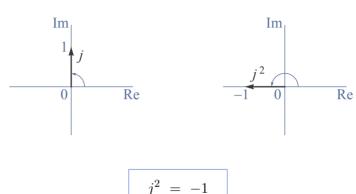
$$w(z_1 + z_2) = wz_1 + wz_2$$

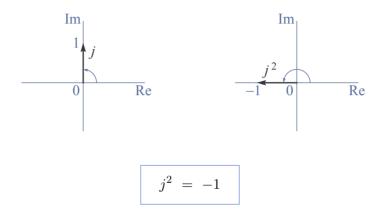
$$aw(z_1 + z_2) = awz_1 + awz_2 (a \ge 0)$$

$$z_0(z_1 + z_2) = z_0z_1 + z_0z_2$$









Using distributivity,

$$(a+jb)(c+jd) =$$

1. The product (2-j)(1-3j) equals

A. -1 - 5j

B. -5 - 5j

C. -1 - 7j

D. 5 - 7j

 $\frac{z_1}{z_2}$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

$$\frac{a+jb}{c+jd} =$$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

$$\frac{a+jb}{c+jd} = \frac{(a+jb)(c-jd)}{c^2+d^2} = \dots$$

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

In Cartesian coordinates,

$$\frac{a+jb}{c+jd} = \frac{(a+jb)(c-jd)}{c^2+d^2} = \dots$$

• $c - jd = (c + jd)^*$ (complex conjugate)

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

In Cartesian coordinates,

$$\frac{a+jb}{c+jd} = \frac{(a+jb)(c-jd)}{c^2+d^2} = \dots$$

• $c - jd = (c + jd)^*$ (complex conjugate)

$$\frac{z_1}{z_2} \cdot z_2 = z_1$$

Therefore in polar coordinates,

$$|z_1/z_2| = |z_1|/|z_2|$$
 and $\angle(z_1/z_2) = \angle z_1 - \angle z_2$

$$\frac{a+jb}{c+jd} = \frac{(a+jb)(c-jd)}{c^2+d^2} = \dots$$

- $c jd = (c + jd)^*$ (complex conjugate)

2. Which (one or more) of the following expressions equals

$$\frac{3+j}{j}$$
?

A.
$$10/(1+3j)$$

B.
$$1 + 3j$$

C.
$$1 - 3j$$

D.
$$-(1+j)(1+2j)$$

2. Which (one or more) of the following expressions equals

$$\frac{3+j}{j}$$
 ?

A.
$$10/(1+3j)$$

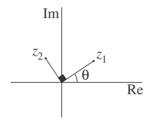
B.
$$1 + 3j$$

C.
$$1 - 3j$$

$$-(1+i)(1+2i)$$

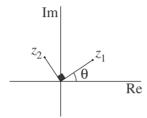
D.
$$-(1+j)(1+2j)$$

5. If z_1 and z_2 are as plotted below, where \blacksquare denotes a right angle, which (one or more) of the following statements are correct?



- A. z_2/z_1 is purely imaginary.
- B. If $\theta = \pi/4$, then $z_1 z_2$ is real-valued.
- C. If $\theta = \pi/4$, then z_1^*/z_2 is real-valued.
- D. If $\theta = \pi/6$, then $(z_1)^4/z_2$ is real-valued.

5. If z_1 and z_2 are as plotted below, where \blacksquare denotes a right angle, which (one or more) of the following statements are correct?



- A. z_2/z_1 is purely imaginary.
- B. If $\theta = \pi/4$, then $z_1 z_2$ is real-valued.
- C. If $\theta = \pi/4$, then z_1^*/z_2 is real-valued.
- D. If $\theta = \pi/6$, then $(z_1)^4/z_2$ is real-valued.

$$z^n = v \qquad \Leftrightarrow \qquad \left\{ \right.$$

$$z^n = v \qquad \Leftrightarrow \qquad \left\{ \begin{array}{c} |z^n| = |v| \\ \end{array} \right.$$

$$z^n = v \qquad \Leftrightarrow \qquad \left\{ \begin{array}{l} |z^n| \, = \, |v| \\ \\ \text{and} \\ \\ \angle z^n \, = \, \angle v \end{array} \right.$$

$$z^n = v \qquad \Leftrightarrow \qquad \left\{ \begin{array}{l} |z^n| \, = \, |v| \\ \quad \text{and} \\ \quad \angle z^n \, = \, \angle v \end{array} \right.$$

Moduli:

$$|z|^n = |v|$$

Moduli:

$$|z|^n = |v| \qquad \Rightarrow \qquad |z| = |v|^{1/n}$$

$$z^n = v \quad \Leftrightarrow \quad \left\{ \begin{array}{l} |z^n| = |v| \\ \text{and} \\ \angle z^n = \angle v \end{array} \right.$$

Moduli:

$$|z|^n = |v| \qquad \Rightarrow \qquad |z| = |v|^{1/n}$$

Angles:

$$n(\angle z) = \angle v$$

$$z^n = v \quad \Leftrightarrow \quad \left\{ \begin{array}{l} |z^n| = |v| \\ & \text{and} \\ & \angle z^n = \angle v \end{array} \right.$$

Moduli:

$$z|^n = |v| \qquad \Rightarrow \qquad |z| = |v|^{1/n}$$

Angles:

$$n(\angle z) = \angle v + k(2\pi)$$

$$z^n = v \quad \Leftrightarrow \quad \left\{ \begin{array}{l} |z^n| = |v| \\ \text{and} \\ \angle z^n = \angle v \end{array} \right.$$

Moduli:

$$|z|^n = |v| \qquad \Rightarrow \qquad |z| = |v|^{1/n}$$

Angles:

$$n(\angle z) = \angle v + k(2\pi)$$

$$\angle z = \frac{\angle v}{n} + k \frac{2\pi}{n}$$

$$z^n = v \quad \Leftrightarrow \quad \left\{ \begin{array}{l} |z^n| = |v| \\ & \text{and} \\ & \angle z^n = \angle v \end{array} \right.$$

Moduli:

$$|z|^n = |v| \qquad \Rightarrow \qquad |z| = |v|^{1/n}$$

Angles:

$$n(\angle z) = \angle v + k(2\pi)$$

$$\angle z = \frac{\angle v}{n} + k \frac{2\pi}{n}$$

Each choice, $k = 0, 1, \dots, n - 1$, gives a different root.

6. (In Reverse!) Determine and plot the roots of

$$z^6 = -64$$

6. (In Reverse!) Determine and plot the roots of

$$z^6 = -64$$

Answer:

