
Cartesian and Polar Forms of a Complex Number

Re

Im

r

z

x0

y

θ

Cartesian coordinates:

• x = <e{z} ; y = =m{z}
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• r = |z| (modulus or magnitude) ; θ = ∠z (angle)
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1. The complex number z is plotted below.
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Its modulus and angle are given by

A. |z| =
√
2 and ∠z = π/4

B. |z| =
√
2 and ∠z = −π/4

C. |z| = 2 and ∠z = −π/4

D. |z| = 2 and ∠z = −1



Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.
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Scaling and Addition
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Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.
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2. If the complex number z has modulus r and angle θ, which of the following is
true about the complex number

w = −3z ?

A. |w| = 3|z| and ∠w = −θ

B. |w| = 3|z| and ∠w = θ + π

C. |w| = −3|z| and ∠w = θ

D. |w| = 9|z| and ∠w = −θ



3. If z1 and z2 are as plotted below, what is the angle of the difference z1 − z2?
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A. 0

B. π/2

C. π

D. −π/2



4. If z1 and z2 are as plotted below, what is value of |z1 + z2|?
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A.
√
17

B.
√
21

C.
√
5

D. None of the above



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

z−z
0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

z−z
0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

c

z−z
0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

c

z−z
0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



The Equation |z − z0| = c

z0 is fixed; z is variable

Re

Im

0

c

z−z
0

z
0

z

|z − z0| = distance of z from z0

|z − z0|2= c : circle of radius c centered at z0.



5. Which of the following equations describes the circle shown below?
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A. |z| = 4

B. |z| = 5

C. |z − 3| = 5

D. |z − 3j| = 5



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

z
1(   +    )/2z

2

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



The Equation |z − z1| = |z − z2|

z1 and z2 are both fixed; z is variable

z
1

z
2

z

z
1(   +    )/2z

2

|z − z1| = |z − z2| : perpendicular bisector of the line segment joining z1 and z2



6. Which (one or more) of the following equations describe the line L shown
below?
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A. |z − 1| = |z − j|

B. |z − 1| = |z + j|

C. |z − 2| = |z − 2j|

D. |z + 1| = |z + j|
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