Cartesian and Polar Forms of a Complex Number

Cartesian and Polar Forms of a Complex Number

Cartesian coordinates:

$$
x=\Re e\{z\} ; \quad y=\Im m\{z\}
$$

Cartesian and Polar Forms of a Complex Number

Cartesian coordinates:

$$
x=\Re e\{z\} ; \quad y=\Im m\{z\}
$$

Polar coordinates:

$$
r=|z| \quad \text { (modulus or magnitude) ; } \quad \theta=\angle z \quad \text { (angle) }
$$

Coordinate Conversions

Coordinate Conversions

Polar to Cartesian:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Coordinate Conversions

Polar to Cartesian:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Cartesian to polar:

$$
r=\sqrt{x^{2}+y^{2}}
$$

Coordinate Conversions

Polar to Cartesian:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Cartesian to polar:

$$
\begin{array}{r}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan \left(\frac{y}{x}\right)
\end{array}
$$

Coordinate Conversions

Polar to Cartesian:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

Cartesian to polar:

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}} \\
\theta=\arctan \left(\frac{y}{x}\right)+ \begin{cases}0 & \text { if } x \geq 0 \\
\pi & \text { if } x<0\end{cases}
\end{gathered}
$$

1. The complex number z is plotted below.

Its modulus and angle are given by
A. $|z|=\sqrt{2}$ and $\angle z=\pi / 4$
B. $|z|=\sqrt{2}$ and $\angle z=-\pi / 4$
C. $|z|=2$ and $\angle z=-\pi / 4$
D. $|z|=2$ and $\angle z=-1$

Scaling and Addition

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

Scaling and Addition

Treat each z as a vector (from origin to z) and apply usual rules.

2. If the complex number z has modulus r and angle θ, which of the following is true about the complex number

$$
w=-3 z ?
$$

A. $|w|=3|z|$ and $\angle w=-\theta$
B. $|w|=3|z|$ and $\angle w=\theta+\pi$
C. $|w|=-3|z|$ and $\angle w=\theta$
D. $|w|=9|z|$ and $\angle w=-\theta$
3. If z_{1} and z_{2} are as plotted below, what is the angle of the difference $z_{1}-z_{2}$?

A. 0
B. $\pi / 2$
C. π
D. $-\pi / 2$
4. If z_{1} and z_{2} are as plotted below, what is value of $\left|z_{1}+z_{2}\right|$?

A. $\sqrt{17}$
B. $\sqrt{21}$
C. $\sqrt{5}$
D. None of the above

The Equation $\left|z-z_{0}\right|=c$

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

$\left|z-z_{0}\right|=$ distance of z from z_{0}

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

$\left|z-z_{0}\right|=$ distance of z from z_{0}

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

$\left|z-z_{0}\right|=$ distance of z from z_{0}

The Equation $\left|z-z_{0}\right|=c$
z_{0} is fixed; z is variable

$\left|z-z_{0}\right|=$ distance of z from z_{0}
$\left|z-z_{0}\right|=c: \quad$ circle of radius c centered at z_{0}
5. Which of the following equations describes the circle shown below?

A. $|z|=4$
B. $|z|=5$
C. $|z-3|=5$
D. $|z-3 j|=5$

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable
z_{1} •

- z_{2}

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

$$
\begin{array}{lll}
& z_{1} \bullet & \\
& & \\
& & \\
& & z_{2}
\end{array}
$$

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

The Equation $\left|z-z_{1}\right|=\left|z-z_{2}\right|$
z_{1} and z_{2} are both fixed; z is variable

$\left|z-z_{1}\right|=\left|z-z_{2}\right|: \quad$ perpendicular bisector of the line segment joining z_{1} and z_{2}
6. Which (one or more) of the following equations describe the line \mathcal{L} shown below?

A. $|z-1|=|z-j|$
B. $|z-1|=|z+j|$
C. $|z-2|=|z-2 j|$
D. $|z+1|=|z+j|$
6. Which (one or more) of the following equations describe the line \mathcal{L} shown below?

A. $|z-1|=|z-j|$
B. $|z-1|=|z+j|$
C. $|z-2|=|z-2 j|$
D. $|z+1|=|z+j|$

