Cartesian and Polar Forms of a Complex Number

Cartesian and Polar Forms of a Complex Number

Cartesian coordinates:

$$x = \Re e\{z\}; \qquad y = \Im m\{z\}$$

Cartesian and Polar Forms of a Complex Number

Cartesian coordinates:

$$x = \Re e\{z\}$$
; $y = \Im m\{z\}$

Polar coordinates:

$$r = |z|$$
 (modulus or magnitude) ; $heta = igta z$ (angle)

Polar to Cartesian:

$$x = r\cos\theta, \quad y = r\sin\theta$$

Polar to Cartesian:

$$x = r\cos\theta, \quad y = r\sin\theta$$

Cartesian to polar:

$$r = \sqrt{x^2 + y^2}$$

Polar to Cartesian:

$$x = r\cos\theta, \quad y = r\sin\theta$$

Cartesian to polar:

$$r~=~\sqrt{x^2+y^2}$$

$$\theta = \arctan\left(\frac{y}{x}\right)$$

Polar to Cartesian:

$$x = r\cos\theta, \quad y = r\sin\theta$$

Cartesian to polar:

$$r ~=~ \sqrt{x^2+y^2}$$

$$\theta = \arctan\left(\frac{y}{x}\right) + \begin{cases} 0 & \text{if } x \ge 0\\ \pi & \text{if } x < 0 \end{cases}$$

1. The complex number z is plotted below.

Its modulus and angle are given by

A.
$$|z| = \sqrt{2}$$
 and $\angle z = \pi/4$
B. $|z| = \sqrt{2}$ and $\angle z = -\pi/4$
C. $|z| = 2$ and $\angle z = -\pi/4$
D. $|z| = 2$ and $\angle z = -1$

2. If the complex number z has modulus r and angle θ , which of the following is true about the complex number

$$w = -3z$$
 ?

A.
$$|w| = 3|z|$$
 and $\angle w = -\theta$
B. $|w| = 3|z|$ and $\angle w = \theta + \pi$
C. $|w| = -3|z|$ and $\angle w = \theta$
D. $|w| = 9|z|$ and $\angle w = -\theta$

3. If z_1 and z_2 are as plotted below, what is the angle of the difference $z_1 - z_2$?

4. If z_1 and z_2 are as plotted below, what is value of $|z_1 + z_2|$?

A. $\sqrt{17}$

B. $\sqrt{21}$

C. $\sqrt{5}$

D. None of the above

$$|z-z_0| = ext{ distance of } z ext{ from } z_0$$

$$|z-z_0| =$$
distance of z from z_0

 z_0 is fixed; z is variable

 $|z-z_0| = \text{distance of } z \text{ from } z_0$

$$|z - z_0| =$$
distance of z from z_0

$$|z-z_0| = c$$
 : circle of radius c centered at z_0

5. Which of the following equations describes the circle shown below?

A. |z| = 4B. |z| = 5C. |z-3| = 5D. |z-3j| = 5

 z_1 and z_2 are both fixed; z is variable

 $|z-z_1| = |z-z_2|$: perpendicular bisector of the line segment joining z_1 and z_2

6. Which (one or more) of the following equations describe the line \mathcal{L} shown below?

A.
$$|z - 1| = |z - j|$$

B. $|z - 1| = |z + j|$
C. $|z - 2| = |z - 2j|$
D. $|z + 1| = |z + j|$

6. Which (one or more) of the following equations describe the line \mathcal{L} shown below?

A.
$$|z - 1| = |z - j|$$

B. $|z - 1| = |z + j|$
C. $|z - 2| = |z - 2j|$
D. $|z + 1| = |z + j|$