Designs, Codes and Cryptography, 27, 261–269, 2002 © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Bounds on the Covering Radius of Linear Codes*

A. ASHIKHMIN Bell Labs, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974 aea@research.bell-labs.com

abarg@research.bell-labs.com

A. BARG

Bell Labs, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974

Communicated by: A. Tietäväinen

Received December 14, 2000; Revised July 12, 2001; Accepted October 12, 2001

Abstract. Asymptotically bounding the covering radius in terms of the dual distance is a well-studied problem. We will combine the polynomial approach with estimates of the distance distribution of codes to derive new results for linear codes.

Keywords: asymptotics of Krawtchouk polynomials, Christoffel-Darboux kernel, distance distribution, dual distance

Mathematics Subject Classification: 94B65, 33C45

1. Introduction

Let $F = \mathbb{F}_2^n$ and let $C \subset F$ be a binary linear code of length *n*. The covering radius of *C* is defined as

$$r(C) = \max_{x \in F} \min_{y \in C+x} \operatorname{wt}(x),$$

where wt(·) denotes the Hamming weight. Bounding the covering radius of codes is one of the main extremal problems of coding theory. Let $C' = \{x \in F : (x, c) = 0 \forall c \in C\}$ be the dual code of *C* and $(A'_i, 0 \le i \le n)$ be its weight distribution, where $A'_i = |\{x \in C' : wt(x) = i\}|$ and (x, c) denotes the dot product. The minimal $i \ge 1$ such that $A'_i > 0$ is called the dual distance of *C*, denoted by d'.

The most developed direction is deriving bounds on r in terms of the strength of C as a design in F or, in other words, in terms of the dual distance d'. This problem received considerable attention through the last decade, see [2], [3, Ch. 12], [4,6–8,11–19], and this is the problem studied in the present paper. Let $r(d') = \max r(C)$ where the maximum is taken over all codes of dual distance at least d'. We will be interested in asymptotic upper bounds on $\rho = r/n$ valid for any sequence of codes C_n of growing length n and dual distance $d' \ge \delta' n$. A review of the methods used for obtaining such bounds is given

*Research supported in part by the Binational Science Foundation (USA-Israel), Grant no. 1999099.

in [2,7], see also [11]. Previous work has been largely concentrated around an application of Delsarte's polynomial method put forward by Tietäväinen in [19]. The result in that paper has the following form:

$$\rho(\delta') \le \varphi(\delta'/2),\tag{1}$$

where $\varphi(x) = \frac{1}{2} - \sqrt{x(1-x)}$. Ultimately the best upper bounds on $\rho(\delta')$ known are obtained based on the following theorem. By $K_i(x)$ we denote the Krawtchouk polynomial of degree *i*.

THEOREM 1 [3, p. 230]. Let *s* be an integer, and let $f(x) = \sum_{i=0}^{n} f_i K_i(x)$ be a polynomial such that $f(i) \le 0, i = s + 1, ..., n$, and

$$f_0 > \sum_{j=d'}^{n} |f_j| A'_j$$
(2)

Then the covering radius of a linear code C with dual distance d' is at most s.

So far applications of this theorem were based on bounding A'_j above by the maximal size A(n, d', j) of a code of length n, distance d' and constant weight j. This enables one to derive an upper bound of the form $\sum_{j=d'}^{n} |f_j|A'_j \leq F$; then to establish (2) for a given polynomial f(x) one only needs to verify that $F < f_0$. Asymptotically this approach amounts to using bounds on the rate $R(\delta', \xi)$ of constant-weight codes with relative distance δ' and relative weight $\xi = j/n$. In particular [2] relies upon the "JPL" bound [13], and [7] uses an improvement of this bound from [9,14] to improve the bound on $\rho(\delta')$ for $0.04 \leq \delta' \leq 0.20$. Papers [2,7] use the polynomial

$$W_t(x) := \frac{(K_{t+1}(x) + K_t(x))^2}{a - x},$$
(3)

where *a* is the smallest root of the numerator and *t* an appropriately chosen parameter. This polynomial was first suggested in [13] for bounding the size of codes. Jointly papers [2] and [7] together with [6] contain the best bounds known to-date. The first two bounds are cited in Theorem 4 below and the remarks following its proof; the third one is too cumbersome to reproduce here (see also Theorem 2 in [2]).

In this paper we suggest to replace estimates of $R(\delta', \xi)$ with other bounds on the weight distribution of codes. One option is, for a given choice of the polynomial f(x), to bound the sum $\sum_{j=d'}^{n} |f_j| A'_j$ as a whole. A method for deriving universal bounds of this type was suggested in a recent work [1]. In the same paper we also obtained estimates of individual coefficients A_i which can be used in Theorem 1. Both approaches enable us to improve the cited results. We establish the following new bounds (logarithms are base 2 throughout).

THEOREM 2. For $0 \le \delta' \le 1/2$

$$\rho(\delta') \le \varphi(H^{-1}(1 - H(\varphi(\delta')))) \tag{4}$$

 $\rho(\delta') \le 2\varphi(\delta'),\tag{5}$

where $H(x) = -x \log(x) - (1 - x) \log(1 - x)$.

Table 1. Bounds on $\rho(\delta')$.

δ'	0.28	0.32	0.36	0.4	0.44	0.48
(4)	0.1047	0.0754	0.0499	0.0285	0.0120	0.00177
(5)	0.102	0.067	0.04	0.020	0.0072	0.00080
[2]	0.105	0.0769	0.051	0.029	0.0125	0.00178
[6]	0.149	0.096	0.057	0.029	0.0103	0.0011

Both (4) and (5) improve the known results (see Table 1). In particular the bound of [6] is improved for all δ' and the bound of [2] in the interval $\delta' \in [\delta'_1, 1/2)$, where $\delta'_1 \approx 0.27$. For $\delta' \leq 0.267 \dots$, (4) is better than (5). For $0 < \delta' \leq \delta'_1$ the results of [2,7] remain the best known. As shown in Table, the improvement of the previous results given by Theorem 2 is rather substantial.

Apart from proving Theorem 2 we also present a new proof of the results of [2,7] which enables us to formulate them in a more explicit manner than in the original works.

2. Bounds on the Weight Distribution

In this section we collect the results from [2] that we need. We also prove an extended version of one of the estimates on the weight distribution from [2].

A. Krawtchouk Polynomials (for the proofs see, for instance, [3]). Let $\alpha(i) = 2^{-n} {n \choose i}$. We have $\sum_{i=0}^{n} K_t(i) K_s(i) \alpha(i) = {n \choose t} \delta_{t,s}$ and thus $||K_t||^2 := \sum_{i=0}^{n} (K_t(i))^2 \alpha(i) = {n \choose t}$. This implies that

$$\left(K_t(i)\right)^2 \le \binom{n}{t} 2^n \Big/ \binom{n}{i}.$$
(6)

The Krawtchouk coefficients of any polynomial $f(x) = \sum f_j K_j(x)$ can be computed from $||K_j||^2 f_j = \sum_{i=0}^n f(i) K_j(i) \alpha(i)$. In particular,

$$K_{a}(x)K_{b}(x) = \sum_{c=0}^{n} p_{a,b}^{c} K_{c}(x),$$
(7)

where

$$p_{a,b}^{c} = \binom{c}{(b-a+c)/2} \binom{n-c}{(b+a-c)/2} \chi\{a+b-c \in 2\mathbb{Z}\}$$

$$\tag{8}$$

Note that $p_{a,b}^c = 0$ for a + b < c and $p_{a,b}^0 = \delta_{a,b} {n \choose a}$.

With $t = \tau n$ and $i = \mu n$ we see from (6) that $n^{-1} \log |K_t(i)| \le E_1(\tau, \mu) + o(1)$, where

$$E_1(u, v) = \frac{1}{2}(H(u) - H(v) + 1).$$

Let $\tau < 1/2$. The zeros of $K_t(x)$ are located inside the segment $[n\varphi(\tau), n(1-\varphi(\tau))]$ and for the minimum zero we have

$$n\varphi(t/n) \le x_t \le n\varphi(t/n) + t^{1/6}\sqrt{n-t}.$$
(9)

Note that the function $\varphi(x)$ is monotone decreasing for $0 \le x \le 1/2$. It is also an involution and so $\varphi^2 = id$. Let

$$I(\tau, \mu) = \int_0^\mu \log \frac{s + \sqrt{s^2 - 4y(1 - y)}}{2 - 2y} \, dy$$

where $s = 1 - 2\tau$. It is known [5] that $n^{-1} \log K_{\lfloor \tau n \rfloor}(\mu n) = E_2(\tau, \mu) + o(1)$, where

$$E_2(\tau, \mu) := H(\tau) + I(\tau, \mu) \quad (0 \le \mu \le \varphi(\tau)).$$
(10)

An upper bound on the exponent of $K_t(i)$ which has a simpler form and is not as crude as E_1 was derived in [10]. It has the form $n^{-1} \log K_{\lfloor \tau n \rfloor}(\mu n) \le E_3(\tau, \mu) + o(1)$, where

$$E_{3}(\tau,\mu) := \frac{1}{2} \left[\mu \log \frac{\varphi(\tau)}{1 - \varphi(\tau)} + \log(1 - \varphi(\tau)) + H(\tau) + 1 \right] \quad (0 \le \mu \le \varphi(\tau)).$$
(11)

We note that $E_1(\tau, \mu) \ge E_3(\tau, \mu) \ge E_2(\tau, \mu)$ for $0 \le \mu \le \varphi(\tau)$ with equality if and only if $\mu = \varphi(\tau)$. Moreover, for this μ also

$$(E_1(\tau,\mu))'_{\mu} = (E_2(\tau,\mu))'_{\mu} = (E_3(\tau,\mu))'_{\mu}.$$

B. Weight Distribution. Let $a_{\xi}(C) = (\log A_{\xi n})/n$ be the exponent of the weight coefficient of a linear code *C* of length *n*. We denote

$$a_{\xi}(\delta) = \max_{C: d(C) = \delta n} a_{\xi}(C).$$

THEOREM 3. For any sequence of codes of relative distance δ

$$a_{\xi} \lesssim \begin{cases} H(\xi) + H(\varphi(\delta)) - 1 & \delta \le \xi \le 1 - \delta \\ -2I(\varphi(\delta), \xi) & 1 - \delta \le \xi \le 1. \end{cases}$$
(12)

(See Figure 1).

.

Proof. (outline).

(a) The starting point is the following result of [1]. Let g(x) be a function and Z(x) a polynomial over \mathbb{R} . Suppose that $Z(x) = \sum_i z_i K_i(x)$ and that $z_i \le 0, 0 \le i \le n$. If $Z(i) \ge g(i), d \le i \le n$ then

$$\sum_{i=d}^{n} g(i)A_i \le z_0 |C| - Z(0).$$
(13)

Figure 1. Upper estimate of the exponent a_{ξ} of the distance spectrum for a family of codes with distance $\delta = 0.3$.

(b) Take $\tau = \varphi(\delta)$ and $t = \tau n$. As in [1], we take

$$g(i) = (K_w(i))^2,$$

$$Z(i) = (K_w(i))^2 - \frac{t+1}{2} \frac{\binom{n}{w}}{\binom{n}{t}} W_t(i),$$

for a suitably chosen w. It is proved in [1], Prop. 2 that for large n and $\frac{w}{n} = \omega < \frac{t}{n} = \tau$, this choice satisfies the conditions of (a). Computing the right-hand side of (13) we get

$$\sum_{i=d}^{n} (K_w(i))^2 A_i \le \frac{n^2(t+1)}{2at^2} \binom{n}{w} \binom{n}{t} - \binom{n}{w}^2.$$
(14)

(c) Let $\delta \leq \xi \leq 1/2$ and take $\omega = \varphi(\xi)$. Then we have $\omega < \tau = \varphi(\delta)$. Taking logarithms in (14) and bounding the exponent of $K_w(i)$ by $E_1(\omega, \xi)$ we obtain the first inequality in (12).

(d) Let $1/2 \le \xi \le 1 - \delta$. Then we take the same polynomials g(i) and Z(i) with $\tau = \varphi(\delta)$ but choose $\omega = 1 - \varphi(\xi)$. The argument of (c) is then repeated which is possible since $|K_k(x)| = |K_k(n-x)|$.

(e) Now let $1 - \delta \le \xi \le 1$. Since we want to ensure that $\omega < \tau$, we replace the above choice of ω by a number arbitrarily close to τ . Then a better estimate of $K_w(i)$ is given in (10), and we get the second inequality of the statement.

Note that (14) implies the following estimate of the left-hand side: for any sequence of codes with distance d

$$n^{-1}\log\sum_{i=d}^{n}(K_{w}(i))^{2}A_{i} \lesssim H(\omega) + H(\tau) \quad (\omega \le \tau).$$
(15)

One more result from [1] that we use is as follows:

$$n^{-1} \log \sum_{i=d}^{n} p_{t,i}^{i} A_{i} \lesssim 2H(\tau) - H(\delta/2) \quad (\delta/2 \le \tau).$$
(16)

3. Bounds on the Covering Radius

We will use the estimates of the previous section for the weight distribution $(A'_i, d' \le i \le n)$ of the code C'. By abuse of notation we let $a_{\xi} = n^{-1} \log A'_i$ and denote by $a_{\xi}(\delta')$ a generic upper bound on a_{ξ} that holds for any family of codes with relative distance δ' . The following theorem gives results of [2,7] in an analytic form, replacing a numerical procedure employed there.

THEOREM 4. Let τ be the minimal number such that

$$\max_{\delta' \le \xi \le 2\tau} \left\{ (1-\xi) H\left(\frac{\tau-\xi/2}{1-\xi}\right) - H(\tau) + \xi + a_{\xi}(\delta') \right\} < 0,$$
(17)

Then $\rho \leq \varphi(\tau)$.

This theorem will follow immediately if we establish the asymptotic behavior of the Krawtchouk coefficients of f(x) from (3).

LEMMA 5. Let f(x) be the polynomial (3) and let $f(x) = \sum_{j=0}^{n} f_j K_j(x)$ be its Krawtchouk expansion. Then

$$\log f_j \sim \log p_{t,t}^j. \tag{18}$$

Suppose that $j = \xi n$ and $t = \tau n$. Then

$$n^{-1}\log f_j = (1-\xi)H\left(\frac{\tau-\xi/2}{1-\xi}\right) + \xi + o(1)$$

Proof. The expression for f_i has the form [13]:

$$f_j = \frac{2}{(t+1)K_t(a)} \binom{n}{t} \sum_{i=0}^t \frac{K_i(a)}{\binom{n}{i}} \left(p_{t,i}^j + p_{t+1,i}^j \right), \tag{19}$$

and $f_j \ge 0$ for all $0 \le j \le n$. Note that for any *i* if $p_{t,i}^j \ne 0$ then $p_{t,i+1}^j = 0$ and vice versa. Estimating (19) below by the last term, we get

$$f_j \ge \frac{2}{t+1} p_{t,t}^j (1+O(n))$$

which implies the expression of the Lemma as a lower bound. Let us prove that this is also an upper bound. Since¹

$$\binom{n}{a}K_t(a) = \binom{n}{t}K_a(t)$$

we can rewrite (19) as

$$f_j = \frac{2}{(t+1)K_t(a)} \frac{\binom{n}{t}}{\binom{n}{a}} \sum_{i=0}^t K_a(i) \left(p_{t,i}^j + p_{t+1,i}^j \right).$$
(20)

Note that the main term of the minimal zero x_a of $K_a(x)$ behaves as $n\varphi(a/n)$, and by definition $a = n\varphi(t) + o(n)$. Hence $x_a \sim t$, and so the sum on *i* ranges over the segment $0 < i < x_a$. Now let us estimate $K_a(i)$ from above by $\exp(nE_3(\varphi(\tau), \xi))$ (see (11)) and take logarithms. Putting $i = \mu n$ and recalling that φ is an involution we can bound the exponent of the summation term in (20) as follows:

$$\frac{1}{2} \Big[\mu \log \frac{\tau}{1-\tau} + \log(1-\tau) + H(\varphi(\tau)) + 1 \Big] + \xi H \left(\frac{\tau-\mu+\xi}{2\xi} \right) + (1-\xi) H \left(\frac{\tau+\mu-\xi}{2(1-\xi)} \right).$$
(21)

The derivative of this expression on μ has the form

$$M(\mu) = \log \frac{(\xi + \tau - \mu)(2 - \xi - \tau - \mu)\tau}{(\xi - \tau + \mu)(\tau + \mu - \xi)(1 - \tau)}$$

Note that $0 \le \mu \le \tau \le 1/2$. We easily check that $M(\tau) \ge 0$ for any $0 \le \xi \le 2\tau$. Next we prove that $M(\mu)$ has no zeros for $\tau - \xi \le \mu \le \tau$. If it does, then these zeros, which satisfy the expression

$$\frac{(\xi+\tau-\mu)(2-\xi-\tau-\mu)\tau}{(\xi-\tau+\mu)(\tau+\mu-\xi)(1-\tau)} = 1$$

and therefore are equal to

$$\mu_{1,2} = \frac{\pm \sqrt{\xi^2 - 4(1 - \tau)\tau(\xi^2 - \tau(1 - \tau))} - \tau}{1 - 2\tau},$$

fall in the segment $\tau - \xi \le \mu \le \tau$. However, $\mu_2 < 0$, and it is checked directly that $\mu_1 > \tau$. Hence the term in (21) attains its maximum on μ for $\mu = \tau$ and we finally obtain

$$n^{-1}\log f_j \lesssim E_3(\varphi(\tau), \tau) + n^{-1}\log p_{t,t}^J$$

Finally since $E_3(\tau, \varphi(\tau)) = E_1(\tau, \varphi(\tau))$, we can substitute E_1 together with the logarithm of $p_{t,t}^j$. This implies that the expression in the statement of the lemma is also an upper bound on the exponent of f_j and completes the proof.

Proof of Theorem 4. For $j = \xi n$ we bound above the exponent of A'_j by $a_{\xi}(\delta')$. Asymptotically the sum $\sum_j f_j A'_j$ is dominated by the largest term, j_0 say, such that its exponent attains the maximum on $\xi = j/n$ for $\delta' \le \xi \le 2\tau$. It is also immediate from Lemma 5 that

$$\log f_0 = n(H(\tau) + 2E_1(\tau, \varphi(\tau))) + o(n).$$

Computing $\log f_0 - \log(f_{j_0}A_{j_0})$, we obtain the expression under the maximum in (17). Together with Theorem 1 this establishes the claim.

Obtaining bounds on $\rho(\delta')$ with this theorem is a matter of choosing a suitable bound on $a_{\xi}(\delta')$. An obvious idea is to use upper bounds on constant weight codes:

$$a_{\xi}(\delta') \leq R(\delta', \xi).$$

Substituting the bound on $R(\delta', \xi)$ from [13] we obtain the result of [2].² An improved bound from [14] gives the result of [7].

A better result for large δ' is obtained if we combine Theorem 4 with Theorem 3. The result can be expressed in a closed form. We need to substitute the bound (12) into (17) and optimize on ξ , $\delta' \leq \xi \leq 1$. The expression whose maximum on ξ is sought, is different for $\xi \leq 1 - \delta'$ and $\xi > 1 - \delta'$. However in both cases this maximum is attained for $\delta' \leq \xi \leq 1 - \delta'$. Indeed, suppose that $1 - \delta' \leq \xi \leq 1$, then substituting the second inequality in (12) into (17), we observe that the part of the expression that depends on ξ equals $(n^{-1} \log p_{t,t}^{\xi n}) - 2I(\varphi(\delta), \xi)$. The first logarithm is the falling function of ξ since its derivative equals

$$\frac{d}{d\xi} \left((1-\xi)H\left(\frac{\tau-\xi/2}{1-\xi}\right) + \xi \right) = \frac{1}{2}\log\frac{(2\tau-\xi)(2-2\tau-\xi)}{(1-\xi)^2}$$

which has no zeros and is negative for $0 \le \xi \le 2\tau$. The function $-2I(\varphi(\delta'), \xi)$ is also directly checked to be falling on ξ . Thus the maximum in this case is attained for $\xi = 1 - \delta'$ but for this ξ the bound is the same as in the first case of (12). It remains to analyze the case $\delta' \le \xi \le 1 - \delta'$. Substituting the first upper bound (12) into the expression to be maximized in (17), we obtain

$$(1-\xi)H\left(\frac{\tau-\xi/2}{1-\xi}\right) - H(\tau) + \xi + H(\xi) - H(\varphi(\delta)) + 1.$$

This function has a unique maximum on ξ for $\xi = 2\tau(1-\tau)$. Substituting this value of ξ , we get, upon simplification, the expression

$$H(\tau) - 1 + H(\varphi(\delta)).$$

The minimum τ for which this is negative is thus arbitrarily close to $\tau_0 := H^{-1}(1 - H(\varphi(\delta)))$. Thus $\rho(\delta') \le \varphi(\tau_0)$, which proves the first part of Theorem 2.

To prove the second part of this theorem, let us take in Theorem 1 the polynomial f(x) given by $f(i) = 2^n p_{t,t}^i$, where $t/n = \tau = \varphi(\delta')$. By (7)–(8) we get f(i) = 0 ($2t + 1 \le i \le n$) and $f_i = (K_t(i))^2$. Now from (15) we have

$$n^{-1}\log\sum_{i=d'}^{n} (K_t(i))^2 A_i \le 2H(\tau)(1+o(1)).$$

Since $n^{-1} \log f_0 \sim 2H(\tau)$, this choice of f(x) satisfies for large *n* the conditions of Theorem 1. So $\rho \leq 2\tau = 2\varphi(\delta')$, as was to be proved.

Remark. If we take $f(x) = W_t(x)$ then by (7) log $f_i \sim \log p_{t,t}^i$, and so

$$f_0 \sim \binom{n}{t} = \exp(nH(\tau) + o(n)).$$

Hence together with (16) we see that (2) is satisfied if τ is arbitrarily close to but less than $\delta'/2$. The first zero of f(x) behaves as $n\varphi(\delta'/2)$ and for greater x, f(x) stays nonpositive; hence $\varphi(\delta'/2)$ is an upper bound on ρ . This gives another proof of (1).

Notes

- 1. Strictly speaking, for this to be true, *a* must be an integer. However since our aim is asymptotic results, the effect of rounding is insignificant.
- 2. In fact, [2] does a little more: the authors there substitute the bound from [13] and some recurrence relations on the function $R(\delta', \xi)$ to improve the result for small δ' .

References

- A. Ashikhmin, A. Barg and S. Litsyn, Estimates of the distance distribution of codes and designs, *IEEE Trans. Inform. Theory*, Vol. 47, No. 3 (2001) pp. 1050–1061.
- A. Ashikhmin, I. Honkala, T. Laihonen and S. Litsyn, On relations between covering radius and dual distance, *IEEE Trans. Inform. Theory*, Vol. 45, No. 6 (2001) pp. 1808–1816.
- 3. G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, Elsevier Science, Amsterdam (1997).
- 4. G. Fazekas and V. I. Levenshteĭn, On upper bounds for code distance and covering radius of designs in polynomial metric spaces, *J. Combin. Theory Ser. A*, Vol. 70, No. 2 (1995) pp. 267–288.
- G. Kalai and N. Linial, On the distance distribution of codes, *IEEE Trans. Inform. Theory*, Vol. 41, No. 5 (1995) pp. 1467–1472.
- 6. T. Laihonen, Covering radius of self-complementary codes and BCH codes, *Proc. IEEE Int'l Sympos. Inform. Theory (ISIT 1998)*, Cambridge, MA.
- 7. ——, On an algebraic method for bounding the covering radius, In (A. Barg and S. Litsyn, eds.), Codes and Association Schemes, AMS, Providence (2001) pp. 213–221.
- T. Laihonen and S. Litsyn, New bounds on covering radius as a function of dual distance, SIAM J. Discrete Math. Vol. 12, No. 2 (1999) pp. 243–251.
- V. I. Levenshtein, On the minimal redundancy of binary error-correcting codes, *Information and Control*, Vol. 28, No. 4 (1975) pp. 268–291.
- 10. S. Litsyn, New upper bounds on error exponents, *IEEE Trans. Inform. Theory*, Vol. 45, No. 2 (1999) pp. 385–398.
- 11. S. Litsyn, P. Solé and R. Struik, On the covering radius of an unrestricted code as a function of the rate and dual distance, *Discrete Applied Math.*, Vol. 82 (1998) pp. 177–191.
- S. Litsyn and A. Tietäväinen, Upper bounds on the covering radius of a code with a given dual distance, *European J. Combin.*, Vol. 17, Nos. 2–3 (1996) pp. 265–270.
- R. J. McEliece, E. R. Rodemich, H. Rumsey and L. R. Welch, New upper bound on the rate of a code via the Delsarte-MacWilliams inequalities, *IEEE Trans. Inform. Theory*, Vol. 23, No. 2 (1977) pp. 157–166.
- 14. A. Samorodnitsky, On the optimum of Delsarte's linear program, *J. Combin. Theory Ser. A*, Vol. 96, No. 2 (2001) pp. 261–287.
- P. Solé, Asymptotic bounds on the covering radius of binary codes, *IEEE Trans. Inform. Theory*, Vol. 36, No. 6 (1990) pp. 1470–1472.
- ——, Packing radius, covering radius, and dual distance, *IEEE Trans. Inform. Theory*, Vol. 41, No. 1 (1995) pp. 268–272.
- P. Solé and P. Stokes, Covering radius, codimension, and dual-distance width, *IEEE Trans. Inform. Theory*, Vol. 39, No. 4 (1993) pp. 1195–1203.
- 18. A. Tietäväinen, Covering radius and dual distance, Des. Codes Cryptogr., Vol. 1, No. 1 (1991) pp. 31-46.
- 19. ——, An upper bound on the covering radius as a function of the dual distance, *IEEE Trans. Inform. Theory*, Vol. 36, No. 6 (1990) pp. 1472–1474.