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Abstract. Asymptotically bounding the covering radius in terms of the dual distance is a well-studied problem.
We will combine the polynomial approach with estimates of the distance distribution of codes to derive new results
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1. Introduction

Let F = F
n
2 and let C ⊂ F be a binary linear code of length n. The covering radius of C is

defined as

r(C) = max
x∈F

min
y∈C+x

wt(x),

where wt(·) denotes the Hamming weight. Bounding the covering radius of codes is one
of the main extremal problems of coding theory. Let C ′ = {x ∈ F : (x, c) = 0 ∀c ∈ C} be
the dual code of C and (A′

i , 0 ≤ i ≤ n) be its weight distribution, where A′
i = |{x ∈ C ′ :

wt(x) = i}| and (x, c) denotes the dot product. The minimal i ≥ 1 such that A′
i > 0 is called

the dual distance of C, denoted by d ′.
The most developed direction is deriving bounds on r in terms of the strength of C as

a design in F or, in other words, in terms of the dual distance d ′. This problem received
considerable attention through the last decade, see [2], [3, Ch. 12], [4,6–8,11–19], and this
is the problem studied in the present paper. Let r(d ′) = max r(C) where the maximum
is taken over all codes of dual distance at least d ′. We will be interested in asymptotic
upper bounds on ρ = r/n valid for any sequence of codes Cn of growing length n and
dual distance d ′ ≥ δ′n. A review of the methods used for obtaining such bounds is given
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in [2,7], see also [11]. Previous work has been largely concentrated around an application of
Delsarte’s polynomial method put forward by Tietäväinen in [19]. The result in that paper
has the following form:

ρ(δ′) ≤ ϕ(δ′/2), (1)

where ϕ(x) = 1
2 −√

x(1− x). Ultimately the best upper bounds on ρ(δ′) known are ob-
tained based on the following theorem. By Ki (x) we denote the Krawtchouk polynomial
of degree i.

THEOREM 1 [3, p. 230]. Let s be an integer, and let f (x) = ∑n
i=0 fi Ki (x) be a polynomial

such that f (i) ≤ 0, i = s +1, . . . , n, and

f0 >

n∑
j=d ′

| f j |A′
j (2)

Then the covering radius of a linear code C with dual distance d ′ is at most s.

So far applications of this theorem were based on bounding A′
j above by the maximal

size A(n, d ′, j) of a code of length n, distance d ′ and constant weight j. This enables
one to derive an upper bound of the form

∑n
j=d ′ | f j |A′

j ≤ F; then to establish (2) for a
given polynomial f (x) one only needs to verify that F < f0. Asymptotically this approach
amounts to using bounds on the rate R(δ′, ξ) of constant-weight codes with relative distance
δ′ and relative weight ξ = j/n. In particular [2] relies upon the “JPL” bound [13], and
[7] uses an improvement of this bound from [9,14] to improve the bound on ρ(δ′) for
0.04 ≤ δ′ ≤ 0.20. Papers [2,7] use the polynomial

Wt (x) := (Kt+1(x)+ Kt (x))2

a − x
, (3)

where a is the smallest root of the numerator and t an appropriately chosen parameter. This
polynomial was first suggested in [13] for bounding the size of codes. Jointly papers [2] and
[7] together with [6] contain the best bounds known to-date. The first two bounds are cited
in Theorem 4 below and the remarks following its proof; the third one is too cumbersome
to reproduce here (see also Theorem 2 in [2]).

In this paper we suggest to replace estimates of R(δ′, ξ) with other bounds on the weight
distribution of codes. One option is, for a given choice of the polynomial f (x), to bound
the sum

∑n
j=d ′ | f j |A′

j as a whole. A method for deriving universal bounds of this type was
suggested in a recent work [1]. In the same paper we also obtained estimates of individual
coefficients Ai which can be used in Theorem 1. Both approaches enable us to improve the
cited results. We establish the following new bounds (logarithms are base 2 throughout).

THEOREM 2. For 0 ≤ δ′ ≤ 1/2

ρ(δ′) ≤ ϕ(H−1(1− H(ϕ(δ′)))) (4)

ρ(δ′) ≤ 2ϕ(δ′), (5)

where H(x) = −x log(x)− (1− x) log(1− x).
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Table 1. Bounds on ρ(δ′).

δ′ 0.28 0.32 0.36 0.4 0.44 0.48

(4) 0.1047 0.0754 0.0499 0.0285 0.0120 0.00177
(5) 0.102 0.067 0.04 0.020 0.0072 0.00080
[2] 0.105 0.0769 0.051 0.029 0.0125 0.00178
[6] 0.149 0.096 0.057 0.029 0.0103 0.0011

Both (4) and (5) improve the known results (see Table 1). In particular the bound of [6]
is improved for all δ′ and the bound of [2] in the interval δ′ ∈ [δ′

1, 1/2), where δ′
1 ≈ 0.27.

For δ′ ≤ 0.267 . . . , (4) is better than (5). For 0 < δ′ ≤ δ′
1 the results of [2,7] remain the best

known. As shown in Table, the improvement of the previous results given by Theorem 2 is
rather substantial.

Apart from proving Theorem 2 we also present a new proof of the results of [2,7] which
enables us to formulate them in a more explicit manner than in the original works.

2. Bounds on the Weight Distribution

In this section we collect the results from [2] that we need. We also prove an extended
version of one of the estimates on the weight distribution from [2].

A. Krawtchouk Polynomials (for the proofs see, for instance, [3]). Let α(i) = 2−n
(n

i

)
. We

have
∑n

i=0 Kt (i)Ks(i)α(i) = (n
t

)
δt,s and thus ‖Kt‖2 := ∑n

i=0(Kt (i))2α(i) = (n
t

)
. This im-

plies that

(Kt (i))
2 ≤

( n
t

)
2n

/( n
i

)
. (6)

The Krawtchouk coefficients of any polynomial f (x) = ∑
f j K j (x) can be computed from

‖K j‖2 f j = ∑n
i=0 f (i)K j (i)α(i). In particular,

Ka(x)Kb(x) =
n∑

c=0

pc
a,b Kc(x), (7)

where

pc
a,b =

(
c

(b −a + c)/2

)(
n − c

(b +a − c)/2

)
χ{a +b − c ∈ 2Z} (8)

Note that pc
a,b = 0 for a +b < c and p0

a,b = δa,b
(n

a

)
.

With t = τn and i = µn we see from (6) that n−1 log |Kt (i)| ≤ E1(τ, µ)+o(1), where

E1(u, v) = 1

2
(H(u)− H(v)+1).
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Let τ < 1/2. The zeros of Kt (x) are located inside the segment [nϕ(τ), n(1−ϕ(τ))] and
for the minimum zero we have

nϕ(t/n) ≤ xt ≤ nϕ(t/n)+ t1/6√n − t . (9)

Note that the function ϕ(x) is monotone decreasing for 0 ≤ x ≤ 1/2. It is also an involution
and so ϕ2 = id. Let

I (τ, µ) =
∫ µ

0
log

s +
√

s2 −4y(1− y)

2−2y
dy

where s = 1−2τ. It is known [5] that n−1 log K�τn�(µn) = E2(τ, µ)+o(1), where

E2(τ, µ) := H(τ )+ I (τ, µ) (0 ≤ µ ≤ ϕ(τ)). (10)

An upper bound on the exponent of Kt (i) which has a simpler form and is not as crude as
E1 was derived in [10]. It has the form n−1 log K�τn�(µn) ≤ E3(τ, µ)+o(1), where

E3(τ, µ) := 1

2

[
µ log

ϕ(τ)

1−ϕ(τ)
+ log(1−ϕ(τ))+ H(τ )+1

]
(0 ≤ µ ≤ ϕ(τ)). (11)

We note that E1(τ, µ) ≥ E3(τ, µ) ≥ E2(τ, µ) for 0 ≤ µ ≤ ϕ(τ) with equality if and only
if µ = ϕ(τ). Moreover, for this µ also

(E1(τ, µ))′µ = (E2(τ, µ))′µ = (E3(τ, µ))′µ.

B. Weight Distribution. Let aξ (C) = (log Aξn)/n be the exponent of the weight coefficient
of a linear code C of length n. We denote

aξ (δ) = max
C : d(C)=δn

aξ (C).

THEOREM 3. For any sequence of codes of relative distance δ

aξ
<∼

{
H(ξ)+ H(ϕ(δ))−1 δ ≤ ξ ≤ 1− δ

−2I (ϕ(δ), ξ) 1− δ ≤ ξ ≤ 1.
(12)

(See Figure 1).

Proof. (outline).
(a) The starting point is the following result of [1]. Let g(x) be a function and Z(x) a

polynomial over R. Suppose that Z(x) = ∑
i zi Ki (x) and that zi ≤ 0, 0 ≤ i ≤ n. If Z(i) ≥

g(i), d ≤ i ≤ n then

n∑
i=d

g(i)Ai ≤ z0|C |− Z(0). (13)
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Figure 1. Upper estimate of the exponent aξ of the distance spectrum for a family of codes with distance δ = 0.3.

(b) Take τ = ϕ(δ) and t = τn. As in [1], we take

g(i) = (Kw (i))2,

Z(i) = (Kw (i))2 − t +1

2

(n
w

)(n
t

) Wt (i),

for a suitably chosen w . It is proved in [1], Prop. 2 that for large n and w
n = ω < t

n = τ , this
choice satisfies the conditions of (a). Computing the right-hand side of (13) we get

n∑
i=d

(Kw (i))2 Ai ≤ n2(t +1)

2at2

(
n

w

)( n
t

)
−

(
n

w

)2

. (14)

(c) Let δ ≤ ξ ≤ 1/2 and take ω = ϕ(ξ). Then we have ω < τ = ϕ(δ). Taking logarithms
in (14) and bounding the exponent of Kw (i) by E1(ω, ξ) we obtain the first inequality
in (12).

(d) Let 1/2 ≤ ξ ≤ 1− δ. Then we take the same polynomials g(i) and Z(i) with τ = ϕ(δ)

but choose ω = 1−ϕ(ξ). The argument of (c) is then repeated which is possible since
|Kk(x)| = |Kk(n − x)|.

(e) Now let 1− δ ≤ ξ ≤ 1. Since we want to ensure that ω < τ , we replace the above
choice of ω by a number arbitrarily close to τ. Then a better estimate of Kw (i) is given
in (10), and we get the second inequality of the statement.

Note that (14) implies the following estimate of the left-hand side: for any sequence of
codes with distance d

n−1 log
n∑

i=d

(Kw (i))2 Ai
<∼ H(ω)+ H(τ ) (ω ≤ τ). (15)
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One more result from [1] that we use is as follows:

n−1 log
n∑

i=d

pi
t,t Ai

<∼ 2H(τ )− H(δ/2) (δ/2 ≤ τ). (16)

3. Bounds on the Covering Radius

We will use the estimates of the previous section for the weight distribution (A′
i , d ′ ≤ i ≤ n)

of the code C ′. By abuse of notation we let aξ = n−1 log A′
i and denote by aξ (δ

′) a generic
upper bound on aξ that holds for any family of codes with relative distance δ′. The following
theorem gives results of [2,7] in an analytic form, replacing a numerical procedure employed
there.

THEOREM 4. Let τ be the minimal number such that

max
δ′≤ξ≤2τ

{
(1− ξ)H

(
τ − ξ/2

1− ξ

)
− H(τ )+ ξ +aξ (δ

′)
}

< 0, (17)

Then ρ ≤ ϕ(τ).

This theorem will follow immediately if we establish the asymptotic behavior of the
Krawtchouk coefficients of f (x) from (3).

LEMMA 5. Let f (x) be the polynomial (3) and let f (x) = ∑n
j=0 f j K j (x) be its Krawtchouk

expansion. Then

log f j ∼ log p j
t,t . (18)

Suppose that j = ξn and t = τn. Then

n−1 log f j = (1− ξ)H

(
τ − ξ/2

1− ξ

)
+ ξ + o(1)

Proof. The expression for f j has the form [13]:

f j = 2

(t +1)Kt (a)

( n
t

) t∑
i=0

Ki (a)(n
i

) (
p j

t,i + p j
t+1,i

)
, (19)

and f j ≥ 0 for all 0 ≤ j ≤ n. Note that for any i if p j
t,i �= 0 then p j

t,i+1 = 0 and vice versa.
Estimating (19) below by the last term, we get

f j ≥ 2

t +1
p j

t,t (1+ O(n))

which implies the expression of the Lemma as a lower bound. Let us prove that this is also
an upper bound. Since1(

n

a

)
Kt (a) =

( n
t

)
Ka(t)
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we can rewrite (19) as

f j = 2

(t +1)Kt (a)

(n
t

)(n
a

) t∑
i=0

Ka(i)
(

p j
t,i + p j

t+1,i

)
. (20)

Note that the main term of the minimal zero xa of Ka(x) behaves as nϕ(a/n), and by
definition a = nϕ(t)+o(n). Hence xa ∼ t , and so the sum on i ranges over the segment
0 < i < xa . Now let us estimate Ka(i) from above by exp(nE3(ϕ(τ ), ξ)) (see (11)) and take
logarithms. Putting i = µn and recalling that ϕ is an involution we can bound the exponent
of the summation term in (20) as follows:

1

2

[
µ log

τ

1− τ
+ log(1− τ)+ H(ϕ(τ ))+1

]
+ ξ H

(
τ −µ+ ξ

2ξ

)
+ (1− ξ)H

(
τ +µ− ξ

2(1− ξ)

)
.

(21)

The derivative of this expression on µ has the form

M(µ) = log
(ξ + τ −µ)(2− ξ − τ −µ)τ

(ξ − τ +µ)(τ +µ− ξ)(1− τ)
.

Note that 0 ≤ µ ≤ τ ≤ 1/2. We easily check that M(τ ) ≥ 0 for any 0 ≤ ξ ≤ 2τ . Next we
prove that M(µ) has no zeros for τ − ξ ≤ µ ≤ τ . If it does, then these zeros, which satisfy
the expression

(ξ + τ −µ)(2− ξ − τ −µ)τ

(ξ − τ +µ)(τ +µ− ξ)(1− τ)
= 1,

and therefore are equal to

µ1,2 = ±
√

ξ 2 −4(1− τ)τ (ξ 2 − τ(1− τ))− τ

1−2τ
,

fall in the segment τ − ξ ≤ µ ≤ τ . However, µ2 < 0, and it is checked directly that µ1 > τ.

Hence the term in (21) attains its maximum on µ for µ = τ and we finally obtain

n−1 log f j
<∼ E3(ϕ(τ ), τ )+n−1 log p j

t,t .

Finally since E3(τ, ϕ(τ )) = E1(τ, ϕ(τ )), we can substitute E1 together with the logarithm
of p j

t,t . This implies that the expression in the statement of the lemma is also an upper bound
on the exponent of f j and completes the proof.

Proof of Theorem 4. For j = ξn we bound above the exponent of A′
j by aξ (δ

′). Asymp-
totically the sum

∑
j f j A′

j is dominated by the largest term, j0 say, such that its exponent
attains the maximum on ξ = j/n for δ′ ≤ ξ ≤ 2τ. It is also immediate from Lemma 5 that

log f0 = n(H(τ )+2E1(τ, ϕ(τ )))+o(n).

Computing log f0 − log( f j0 A j0), we obtain the expression under the maximum in (17).
Together with Theorem 1 this establishes the claim.
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Obtaining bounds on ρ(δ′) with this theorem is a matter of choosing a suitable bound on
aξ (δ

′). An obvious idea is to use upper bounds on constant weight codes:

aξ (δ
′) ≤ R(δ′, ξ).

Substituting the bound on R(δ′, ξ) from [13] we obtain the result of [2].2 An improved
bound from [14] gives the result of [7].

A better result for large δ′ is obtained if we combine Theorem 4 with Theorem 3. The result
can be expressed in a closed form. We need to substitute the bound (12) into (17) and optimize
on ξ, δ′ ≤ ξ ≤ 1. The expression whose maximum on ξ is sought, is different for ξ ≤ 1− δ′

and ξ > 1− δ′. However in both cases this maximum is attained for δ′ ≤ ξ ≤ 1− δ′. Indeed,
suppose that 1− δ′ ≤ ξ ≤ 1, then substituting the second inequality in (12) into (17), we
observe that the part of the expression that depends on ξ equals (n−1 log pξn

t,t )−2I (ϕ(δ), ξ).
The first logarithm is the falling function of ξ since its derivative equals

d

dξ

(
(1− ξ)H

(
τ − ξ/2

1− ξ

)
+ ξ

)
= 1

2
log

(2τ − ξ)(2−2τ − ξ)

(1− ξ)2
,

which has no zeros and is negative for 0 ≤ ξ ≤ 2τ. The function −2I (ϕ(δ′), ξ) is also
directly checked to be falling on ξ. Thus the maximum in this case is attained for ξ = 1− δ′

but for this ξ the bound is the same as in the first case of (12). It remains to analyze the case
δ′ ≤ ξ ≤ 1− δ′. Substituting the first upper bound (12) into the expression to be maximized
in (17), we obtain

(1− ξ)H

(
τ − ξ/2

1− ξ

)
− H(τ )+ ξ + H(ξ)− H(ϕ(δ))+1.

This function has a unique maximum on ξ for ξ = 2τ(1− τ). Substituting this value of ξ ,
we get, upon simplification, the expression

H(τ )−1+ H(ϕ(δ)).

The minimum τ for which this is negative is thus arbitrarily close to τ0 := H−1(1−
H(ϕ(δ))). Thus ρ(δ′) ≤ ϕ(τ0), which proves the first part of Theorem 2.

To prove the second part of this theorem, let us take in Theorem 1 the polynomial f (x)

given by f (i) = 2n pi
t,t , where t/n = τ = ϕ(δ′). By (7)–(8) we get f (i) = 0 (2t +1 ≤ i ≤ n)

and fi = (Kt (i))2. Now from (15) we have

n−1 log
n∑

i=d ′
(Kt (i))

2 Ai ≤ 2H(τ )(1+o(1)).

Since n−1 log f0 ∼ 2H(τ ), this choice of f (x) satisfies for large n the conditions of
Theorem 1. So ρ ≤ 2τ = 2ϕ(δ′), as was to be proved.

Remark. If we take f (x) = Wt (x) then by (7) log fi ∼ log pi
t,t , and so

f0 ∼
( n

t

)
= exp(nH(τ )+o(n)).
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Hence together with (16) we see that (2) is satisfied if τ is arbitrarily close to but less than
δ′/2. The first zero of f (x) behaves as nϕ(δ′/2) and for greater x , f (x) stays nonpositive;
hence ϕ(δ′/2) is an upper bound on ρ. This gives another proof of (1).

Notes

1. Strictly speaking, for this to be true, a must be an integer. However since our aim is asymptotic results, the
effect of rounding is insignificant.

2. In fact, [2] does a little more: the authors there substitute the bound from [13] and some recurrence relations
on the function R(δ′, ξ) to improve the result for small δ′.
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11. S. Litsyn, P. Solé and R. Struik, On the covering radius of an unrestricted code as a function of the rate and

dual distance, Discrete Applied Math., Vol. 82 (1998) pp. 177–191.
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