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1. Introduction. In the problem of bounding the size of codes in compact homogeneous spaces, Del-
sarte’s polynomial method gives rise to the most powerful universal bounds on codes. Many overviews
of the method exist in the literature; see for instance Levenshtein (1998). The purpose of this talk is to
present a functional perspective of this method and give some examples.

LetX be a compact metric space whose isometry groupG acts transitively on it. The zonal polyno-
mials associated with this action give rise to a family of orthogonal polynomialsP(X) = {Pκ} where
κ = 0, 1, . . . is the total degree. These polynomials are univariate ifG acts onX doubly transitively
(the well-known examples include the Hamming and Johnson graphs and theirq-analogs and otherQ-
polynomial distance-regular graphs; the sphereSn−1 ∈ Rn) and are multivariate otherwise.

First consider the univariate case. Then for any given value of the degreeκ = i the familyP(X)
contains only one polynomial, denoted below byPi. Suppose that the distance onX is measured in such
a way thatd(x, x) = 1 and the diameter ofX equals−1 (to accomplish this, a change of variable is
made in the natural distance function onX). We refer to the model case ofX = Sn−1 although the
arguments below apply to all spacesX with the above properties. Let〈f, g〉 =

∫ 1
−1 fgdµ be the inner

product inL2([−1, 1], dµ) wheredµ(x) is a distribution on[−1, 1] induced by an invariant measure on
G. We assume that〈1, 1〉 = 1.

By Delsarte’s fundamental theorem, the size of the codeC ⊂ X whose distances take values in[−1, s]
is bounded above by

(1) |C| ≤ inf
f∈Φ

f(1)/f̂(0)

where

(2) Φ = {f : f(x) ≤ 0, x ∈ [−1, s]; f̂(0) > 0, f̂(i) ≥ 0, i = 1, 2, . . . },

wheref̂(i) = 〈f, Pi〉 are the Fourier coefficients off .

2. A functional approach. 2.1. Notation. Let V be the space of real square-integrable functions on
[−1, 1] and letVk be the space of polynomials of degreek or less. Letpi = Pi/〈Pi, Pi〉, i = 0, 1, . . . be
the normalized polynomials. The polynomials{pi} satisfy a three-term recurrence of the form

xpi = aipi+1 + bipi + ai−1pi−1,(3)

i = 1, 2, . . . ; p−1 = 0, p0 = 1; a−1 = 0.

In other words, the matrix of the operatorx : V → V (multiplication by the argument) in the orthonormal
basis is a semi-infinite symmetric tridiagonal matrix. LetXk = Ek ◦ x whereEk = projV→Vk . It is
well known that fork ≥ 1 the spectrum ofXk coincides with the set{xk+1,1, . . . , xk+1,k+1} of zeros of
pk+1. Below we denote the largest of these zeros byxk+1. Let

Kk(x, s) ,
k∑
i=0

pi(s)pi(x)

be thek-th reproducing kernel. By the Christoffel-Darboux formula,

(4) (x− s)Kk(x, s) = ak(pk+1(x)pk(s)− pk+1(s)pk(x)).
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In particular,XkKk(x, xk+1,i) = xk+1,iKk(x, xk+1,i). Note thatKk(x, y) acts onVk as a delta-function
aty:

(5) 〈Kk(·, y), f(·)〉 = f(y).

2.2. Remarks on the choice of polynomials.The choice of polynomials for problem (1)-(2) was
studied extensively in the works of Levenshtein (1978-1998) and Sidelnikov (1980). For any givenn,
polynomials that attain the minimum in (1) and satisfy conditions (2) are known from these works. The
purpose of this section is to observe how these polynomials arise under the functional approach developed
here.

Without loss of generality let us assume thatf(1) = 1. We need to maximize the linear functional

F(f) := f̂(0) = 〈f, 1〉.
Let us restrict the class of functions toVn. By the Markov-Lucacs theorem, a polynomialf(x) that is
nonpositive on[−1, s] can be written in the form

fn(x) = (x− s)g2 − (x+ 1)φ2
1 or fn(x) = (x+ 1)(x− s)g2 − φ2

2

according as its degreen = 2k + 1 or 2k + 2 is odd or even. Hereg, φ1 ∈ Vk, φ2 ∈ Vk+1 are some
polynomials. Below the negative terms will be discarded. We use a generic notationc for multiplicative
constants chosen to fulfill the conditionf(1) = 1.

2.2.1. The MRRW polynomial.Restricting our attention to odd degreesn = 2k + 1, let us seekf(x)
in the form(x − s)g2. Let us write the Taylor expansion ofF in the “neighborhood” ofg. Let h ∈ Vk
be a function that satisfies‖h‖ ≤ ε for a small positiveε and the conditionh(1) = 0. We obtain

F((x− s)(g + h)2) = F((x− s)g2) + 〈(x− s)(g + h), g + h〉 − 〈(x− s)g, g〉
= F(f) + F ′(h) + 1/2〈F ′′h, h〉

whereF ′ = 2(x − s)g,F ′′ = 2(x − s) are the Fŕechet derivatives ofF . This relation shows that forf
to be a stationary point ofF , the functiong should satisfydF = 2〈g, (x− s)h〉 = 0 for any functionh
with the above properties. First assume thats = xk+1. Then by (4), a stationary point ofF is given by
g = Kk(x, s), and we obtainf in the form

fn(x) = c(x− s)(Kk(x, s))2.

Sincef̂n(0) = 0, conditions (2) are not satisfied; however, it can be checked that they are satisfied if
xk < s < xk+1. For all suchs, the polynomialfn is a valid choice for problem (1). This polynomial
was used in the works of McElieceet al. and Kabatiansky and Levenshtein to derive the MRRW and KL
bounds on codes.

2.2.2. Levenshtein polynomials,n = 2k + 1. So far in our optimization we did not use the condition
h(1) = 0. To use it, let us writeh = (1 − x)h1, h1 ∈ Vk−1 and repeat the above calculation. We find
that stationary points ofF should satisfy

dF (−) = 2〈(x− s)g, (1− x)h1〉 = 0,

whereF (−)( . ) =
∫
. (1−x)dµ is the moment functional w.r.t. the distributiondµ(−)(x) = (1−x)dµ(x).

The stationary point ofF (−) is given by the reproducing kernelK−k (x, s) with respect to this distribution:

(6) K−k (x, s) =
k∑
i=0

p−i (s)p−i (x)

where{p−i (x), i = 0, 1, . . . } is the corresponding orthonormal system. To find the polynomialsp−i (x)
observe that

F (−)(p−i p
−
j ) = F(p−i (x)p−j (x)(1− x)) = δi,j

is satisfied forp−i (x) = Ki(1, x)/(aipi+1(1)pi(1))1/2. Indeed, ifj < i then the function(1−x)Ki(1, x)
is in the subspace spanned bypi+1, pi and thus is orthogonal toKj(1, x). To conclude, the function
sought can be taken in the form

f−n (x) = c(x− s)(K−k (x, s))2.



2.2.3. Levenshtein polynomials,n = 2k + 2. In this case we seek the polynomial in the formfn =
(x − s)(x + 1)g2. The necessary condition for the stationary point takes the form〈(x − s)(1 + x)(1 −
x)g, h〉 = 0. From this,g = K±k−1(x, s) where the kernelK±k−1 is taken with respect to the distribution

dµ(±)(x) = (1 + x)(1 − x)dµ(x). The corresponding orthogonal polynomialsp±i (x) are also easily
found: up to normalization they are equal

p±i (x) = Ki(x,−1)pi+1(1)−Ki(x, 1)pi+1(−1).

Thenf±n (x) = c(x− s)(x+ 1)(K±k−1(x, s))2.
Remarks.
1. The polynomialsf−n , f

±
n were constructed and applied to coding theory in Levenshtein (1978).

Polynomials closely related to them were studied in a more general context in the works of M. G. Kreinet
al.; see Krein and Nudelman (1974). The orthogonal systems{p−i }, {p

±
i } are sometimes calledadjacent

polynomials of the original system{pi}.
2. The above arguments do not imply optimality in Delsarte’s problem of the polynomials constructed

since the second differential of the functionalsF ,F (−),F (±) above is undefined (e.g.,d2F(g) = 2〈(x−
s)h, h〉). Optimality inVn of the polynomialsf−n , f

±
n as well as the range ofn, s in which conditions (2)

hold were established by Sidelnikov and Levenshtein in the papers cited.
3. Asymptotic bounds derived from (1) relying upon the polynomialsfn, f

−
n , f

±
n coincide. For the

finite values of the parameters, better bounds are obtained fromf−n , f
±
n .

3. Spectral method. The ideas for constructing polynomials in the problem (1)-(2) discussed below
originate in the work of Bachoc (2006). They were elaborated upon in a previous work of the authors.

We develop the remark made after (4), namely that for anyi ≥ 1, Kk(x, xk,i) is an eigenfunction of
the operatorXk. SinceKk(x, s) is a good choice for the polynomial in Delsarte’s problem, it is possible
to base the choice of the polynomial on the eigenvectors ofXk as opposed to the analytic arguments
discussed above. In particular,Kk(x, s) arises as an eigenfunction of the operatorTk that acts onVk
asφ 7→ Xkφ − cφ̂(k)pk for some constantc. A minor difficulty arises in proving conditions (2) for
the polynomials thus chosen since the coefficients{ai, i = 0, 1, . . . } are negative for some orthogonal
systems (for instance, for the Krawtchouk polynomials). It is resolved by replacingXk with the operator
Sk = Ek ◦ p1 since then the coefficients in the three-term expansion ofp1pi are always nonnegative.

We note that the argument about the eigenfunctions does not depend on the choice of theL2 space;
in particular, the kernelsK−k ,K

±
k arise if the operatorXk is written with respect to the basis of the

corresponding adjacent polynomials ({p−i } or {p±i }) and their generating distribution.
To further discuss this method, we first observe that for the basis{pi} and distributiondµ, it leads to

the estimate

(7) M ≤ 4akpk+1(1)pk(1)
P1(1)− λmax(Sk)

(Barg and Nogin (2006)), which yields bounds very close to those obtained relying on the MRRW poly-
nomial. By the remark in the previous paragraph, an appropriate modification of the spectral method
can be used to derive Levenshtein-type bounds as well. For instance, for the Krawtchouk system
(the Hamming spaceHn), adjacent polynomialsp−i are simply the Krawtchouk polynomials associ-
ated with the Hamming spaceHn−1, so the operatorXk is computed from the recurrence (3) with
ai = 1/2

√
(n− 1− i)(i+ 1), i = 0, 1, . . . , k − 1; bi = n/2, i = 0, 1, . . . , k.

The method outlined above has two advantages. First, it enables one to obtain simple estimates of
the largest eigenvalue ofSk which is important in verifying the conditionf(x) ≤ 0, x ∈ [−1, s]. The
second advantage is a more substantial one: this method can be extended to the case ofmultivariate zonal
polynomials when the analytic alternative is not readily available. This case arises when the spaceX
is homogeneous but not 2-point homogeneous. Worked examples include the real Grassmann manifold
Gk,n (Bachoc (2006); thePi are given by the generalizedk-variate Jacobi polynomials) and the so-called
ordered Hamming space (Barg and Purkayastha (2007)). We provide a few more details on the latter case
in order to illustrate the general method.

LetQ be a finite alphabet of sizeq. Consider the setQr,n of vectors of dimensionrn overQ. A vector
x will be written as a concatenation ofn blocks of lengthr each,x = {x11, . . . , x1r; . . . ;xn1, . . . , xnr}.



For a given vectorx let ei, i = 1, . . . , r be the number ofr-blocks ofx whose rightmost nonzero entry
is in theith position counting from the beginning of the block. Ther-vectore = (e1, . . . , er) will be
called theshapeof x. A shape vectore = (e1, . . . , er) defines a partition of a numberN ≤ n into a
sum ofr parts. Lete0 = n −

∑
i ei. Let ∆r,n = {e ∈ (Z+ ∪ {0})r :

∑
i ei ≤ n} be the set of all such

partitions. The zonal polynomials associated toQr,n arer-variate polynomialsKf (e), f, e ∈ ∆r,n of
degreeκ =

∑
i fi. They are orthogonal on∆r,n according to the following inner product∑

e∈∆r,n

Kf (e)Kg(e)w(e) = 0 (f 6= g).

The weight in this relation is given by the multinomial probability distribution

w(e1, . . . , er) = n!
r∏
i=0

peii
ei!

(pi = qi−r−1(q − 1), i = 1, . . . , r; p0 = q−r),

so the polynomialsKf (e) form a particular case ofr-variate Krawtchouk polynomials.
Letx ∈ Qr,n be a vector of shapee. Define a weight function onQr,n by settingw(x) =

∑
i iei and

let dr(x,y) = w(x− y) be the ordered Hamming metric (known also as the Niederreiter-Rosenbloom-
Tsfasman metric). We note that in the multivariate case there is no direct link between the variables and
the metric. For instance, for the spaceQr,n the polynomials (as well as relations in the corresponding
association scheme) are naturally indexed by shape vectorse while the weight is some functione.

The Delsarte theorem in this case takes the following form:The size of an(n,M, d) codeC ⊂ Qr,n
is bounded above byM ≤ inff∈Φ f(0)/f0, where

Φ = {f(x) = f(x1, . . . ,xr) = f0 +
∑
e6=0

feKe(x) : f0 > 0, fe ≥ 0(e 6= 0); f(e) ≤ 0 ∀e s.t.
r∑
i=1

iei ≤ d}

The argument for the univariate case given in this section can be repeated once we establish a three-term
relation for the polynomialsKf (e). Let Kκ be the column vector of the normalized polynomialsKf

ordered lexicographically with respect to allf that satisfy
∑

i fi = κ and letP (e) be a suitably chosen
linear polynomial. Then

P (e)Kκ(e) = AκKκ+1(e) +BκKκ(e) +ATκ−1Kκ−1(e)

whereAκ, Bκ are matrices of order
(
κ+r−1
r−1

)
×
(
κ+s+r−1
r−1

)
ands = 1, 0, respectively. The elements of

these matrices can be computed explicitly from combinatorial considerations. This gives an explicit form
of the operatorSκ = Eκ ◦P (e) in the orthonormal basis. Relying on this, it is possible to derive a bound
on codes in the NRT space of the form (7) and perform explicit calculations, both in the case of finite
parameters and for asymptotics. The full details of the calculations are given in work cited above.
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