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Instructor: Alexander Barg (abarg@umd.edu) Office: AVW2361

Course goals: To introduce the main concepts of coding theory 
and the body of its central results. 

Prerequisites for the course
The main prerequisite is mathematical maturity, in particular, interest in 
learning new mathematical concepts. No familiarity with information 
theory and communications-related courses will be assumed. On the 
other hand, the students are expected to be comfortable with linear 
spaces, elementary probability and calculus, and elementary concepts in 
discrete mathematics such as binomial coefficients and an assortment of 
related facts. There is no required textbook.

The web site http://www.ece.umd.edu/~abarg/626 contains
a detailed list of topics, problems, schedule of exams, grading 
policy, reference books. 

ENEE626, CMSC858B, AMSC698B 

Error Correcting Codes

mailto:abarg@umd.edu
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Part I. Introduction to coding theory
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Plan for today:
1. Syllabus, logistics
2. Model of a communication system
3. Binary Symmetric Channel
4. Coding for error correction
5. Notation and language

Digital communication: Computer networks, wireless telephony, data
and media storage, RF communication (terrestrial, space)

Transmission over communication channels is prone to errors.
background noise, mutual interference between users, attenuation in channels,
mechanical damage, multipath propagation, …
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source coder channel decoder destination

Model of a communication system

more detailed:

source
source 
coder

(compression)

modulator channel

demodulator

channel
coder

channel decoder
(error correction)

source
decoderdestination
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source coder channel decoder destination

Model of a communication system

more detailed:

source
source 
coder

(compression)

modulator channel

demodulator

channel
coder

channel decoder
(error correction)

source
decoderdestination

we are interested in
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Assume transmission with binary antipodal signals over a Gaussian
channel

Suppose that the received signal y is decoded as
x=sgn(y) s 

The probability of error is computed as

+s-s

N(s,σ2)
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Binary Symmetric Channel (BSC)

0

1

0

1

1-p

1-p
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p

transmissions are independent

p is called the transition (cross-over) probability

Much of coding theory deals with error correction for transmission
over the BSC. This will also be our main underlying model.  
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Messages = binary strings   Ex.: 101

k bits (m1,m2,...,mk) word, vector       mi∈{0,1}

encoding: message      codeword.  purpose: error correction

Example: 2 messages 0,1.

no coding: 0 → channel → 1 (message lost)

encode 0 → 000                   C={000,111} – a code
1 → 111

000 → channel → 010

Pr[0|010]=p(1-p)2Pr[0]/Pr[010]; Pr[1|010]=p2(1-p) Pr[1]/Pr[010]

Pr[0|010] 
Pr[1|010] 

Thus, if p<1/2, Pr[0|010]>Pr[1|010].
Conclude: decoding by maximum a posteriori probability (MAP) will 
recover the message correctly

=(1-p)/p > 1 if p<1/2. 
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Definition 1.2: Hamming distance between two vectors x,y
d((x1,x2,...,xn),(y1,y2,...,yn))=|{i:xi ≠ yi}|

Transmit M=2k messages with a code  C= {x1,x2,…xM}

y received from the channel. Decode to 

x = argmin d(xi,y)          (minimum distance decoding)
xi∈ C

(if there are several such x, declare an error)

Observation: on the BSC(p), p<½, the probability Pr[e] of error e=(e1,e2,e3) 
decreases as the # of 1’s among e1,e2,e3 increases. Hence, decoding by 
minimum distance is equivalent to MAP decoding

Conclude: it’s a good idea in many cases to have codewords far apart
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Bits of notation

Finite sets A,B,C,F, ...
The number of elements in A is called the size of A, denoted |A| or #(A).

F2={0,1} the binary field; F=F2
n – n-dim linear space over F2

x,y,... – vectors (often in F) (row vectors); xT transpose (column vect.)
0=0n the all-zero vector; likewise, (0i1j...) is a generic shorthand for a vector
(x,y)=∑i=0

n xi yi dot product
d(x,y) = |{i: xi≠ yi}| Hamming distance 
w(x) (sometimes wt(x)) the weight of x, i.e., d(x,0)

G,H,A,... matrices

d(C) = the distance of the code C
C[n,k,d] a linear code of length n, dimension k, distance d
C(n,M,d) a code, not necessarily linear, of length n, size M, distance d
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Mathematical concepts used in coding theory

The primary language is that of linear algebra.
Linear algebra deals with geometry of linear spaces and their transformations

A linear space L is the most familiar concept, such as R2, R3 and the likes
It is formed of a field of constants (e.g., R) and vectors over it
Vectors obey the natural rules:
they can be added to form another vector; they can be stretched by multiplying
them by a constant.

To describe L it is convenient to choose a basis (a frame). The number
of vectors in the basis is called the dimension of L.
The space does not depend on the choice of the basis although the
coordinates of the vectors generally change if one passes to another basis

A subspace M of L can be described by any of its bases or as
a set of solutions of a system of equations (kernel of a linear operator)

The quotient space L/M consists of M and its shifts by vectors from L\M
Linear spaces of coding theory live over finite fields (such as F2={0,1}).
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Reminder (cont'd): binomial coefficients

x∈R

(a) Permutations: (abc, acb, bac, bca, cba, cab)
n(n-1)(n-2)…2 .1=n! (n factorial)

(b) The number of ways to choose an ordered k-tuple out of an n-set
n(n-1)(n-2)…(n-k+2)(n-k+1)=(n)k

(c) The number of unordered k-tuples out of an n-set.

notation: 1                                 0   
1    1                              1

1    2    1                           2
1   3     3    1                        3

1    4    6     4    1                    4
1    5   10   10 5    1                5

1    6    15   20   15   6     1           6
1     7    21   35   35 21  7     1       7|{x ∈ F: wt(x)=k}|=

Extend the definition:

See probl. 12, h/work 1
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Operating with binary data

XOR AND

+ 0  1                      • 0  1
0 0  1 0    0  0
1 1  0 1    0  1

x1=(01101), x2=(10101)
x1 + x2=(11000)
(x1,x2)=∑i=1

n x1,ix2,i  (dot product)

(x1,x2)=0 or 1 according as #i such that x1,i=x2,i=1 is even or odd

Notation: F2={0,1}; F=(F2)n
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code     can correct one error, can be used to
transmit 8=23 messages (3 bits of information)

Examples of codes:

m1 000 a 000000
m2 001 a 001111
m3 010 a 010110
m4 011 a 011001
m5 100 a 100101
m6 101 a 101010
m7 110 a 110011
m8 111 a 111100

Repetition code {000…00,111…11} k=1
Single parity-check code {x1,x2,…,xM} formed of all codewords of length     

n with an even number of ones. M=2n-1

n=3: {000,011,101,110}

Goal: construct codes of arbitrary length that correct a given number
of errors, equipped with a simple decoding procedure
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ENEE626 Lecture 2: Linear codes

1. Linear codes: examples, definition
2. Generator and parity-check matrices
3. Hamming weight
4. Algorithmic complexity
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Therefore,       is closed under addition:

xi + xj = (mi + mj) G= mk G=xk ∈

Verify that all the codewords of        can 
be computed by multiplying

xi = mi G, where 

100101
G=  010110

001111

m6G=(101)G=101010=x6

is a linear code (a linear subspace of (F2)n )

Linear codes
Code C

m1 000 a 000000
m2 001 a 001111
m3 010 a 010110
m4 011 a 011001
m5 100 a 100101
m6 101 a 101010
m7 110 a 110011
m8 111 a 111100
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F=(F2)n is a linear space:

• F is an abelian group under addition
• Its unit is the all-zero vector 0=(00...000)
• Multiplication by scalars is distributive 

c(x+y)=cx+cy
(a+b)x=ax+bx

• Multiplication is associative:
(ab)x = a(bx)

Definition 2.1: A linear subspace of F is called a binary linear code

For instance, the code      above is linear

Let A be a linear code, k=dim A. A matrix whose rows are the basis
vectors of A is called a generator matrix of the code.

G (kxn)-matrix
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Example: let n=4, consider 4-dim space F
0000
0001
0010
0011                                           x1 x2
0100          2-dim subspace h0001, 0010i  (h , i means linear hull)
0101        
0110             C = { λ1x1+λ2x2, λ1,λ2∈{0,1} } 
0111                                                            0001
1000          Explicitly, C={0000,0001,0010,0011}        G= 0010
1001
1010          Generally, |C|=2k, where k is the dimension of the code
1011                                            
1100
1101
1110
1111
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n is called the length of the code. 

Consider the code A={00000,11111} of length 5, dimension 1

G=[11111]

(the repetition code).

Single parity-check code B, n=5  G=

Definition 2.2: The Hamming weight of a vector x=(x1,...,xn) is defined as
w(x)=|{i : xi=1}|

Exercise: The sum of two even-weight vectors has even weight.

Thus, the code B is formed of 24=16 vectors of even weight
(satisfies an overall parity check)
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The parity-check matrix of a code

Consider a code of length 6: x=(x1,x2,x3,x4,x5,x6)
Suppose that

x1 + x2 + x3 + x4 =0
x2 + x3 + x5             =0

x1 + x3 + x6=0

Assign any values to x1,x2,x3, solve for x4,x5,x6

Parity-check equations

H xT=0

Definition 2.3: H is called a parity-check matrix of the code

Another definition of a linear code: C={x ∈ F: H xT=0}
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Notation: C[n,k] denotes a linear code of length n and dimension k
(0 · k · n)

Let C[n,k] be a code. The encoding mapping can be written as

x=(m1,...,mk) G

code vector   message vector        generator matrix k x n

rank (G)=k ⇒ there exist k linearly independent columns
Suppose w.l.o.g. that they are columns 1,2,...,k:

G=[Ik | A], where A is some k x (n-k) matrix

then the code vector that corresponds to (m1,...,mk) has the form
x=(m1,m2,...mk,xk+1,...,xn) 

the message bits show directly in the code vector
In such a situation we say that the code is defined in a

systematic form
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Proposition 2.1: Any [n,k] linear code can be written in a systematic form

Indeed, take the k columns of G that have rank k; by elementary
operations diagonalize this submatrix

Example: The matrix

defines the single-parity-check code of length 5 in a systematic form: the 
last 4 coordinates carry the message, the first coordinate corresponds to 
the parity check. For instance, the message (1101) is encoded as (11101)

G=

Note that we can have message symbols in any 4 of the 5 coordinates:

for instance, the matrix                               defines the same code as in Example 2.2,

which has been written in a systematic form to show the message bits in coordinates
1,3,4,5. 

Lemma 2.2: Let G=[Ik|A] be a k x n generator matrix of a code C. Then H=[AT|In-k]
is a parity-check matrix of C.

Proof:
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Encoding in a systematic form

G=[Ik | A], A a k x (n-k) matrix with rows a1,...ak

mG=(m1,...,mk, a), where a=∑i mi ai

Let H=[AT|In-k] be the p.-c. matrix. The parity check symbols are computed
from the equations HxT=0, where x=(m1,...,mk,x1,x2,...,xn-k). Thus,

m1 a1,1  +m2 a2,1   +...+mk ak,1+x1                         =0
m1 a1,2  +m2 a2,2   +...+mk ak,2      +    x2             =0
....
m1 a1,n-k+m2 a2,n-k+...+mk ak,n-k + xn-k=0

Encoding in a systematic form is easier than in a general form
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Definition 2.4: Let  x1,x2 ∈ F. The Hamming distance 

d(x1,x2) = #{i: x1,i≠ x2,i}

Exercises: 1. Prove that d(·,·) is a metric on F.
2. Prove that d is translation invariant, i.e., 

d(x1,x2)=d(x1+y,x2+y)
where y∈ F is an arbitrary vector.

Take y=x2, then d(x1,x2)=d(x1+x2,0)
Call d(x,0) the weight of x, denoted wt(x)
wt(x)=#{i: xi≠ 0}

Definition 2.5: Let C be a linear code. The distance of C is defined 
as

d(C)=minx1,x2 ∈ C, x1≠x2
d(x1,x2)

Exercise: d(C)=minx∈ CÂ 0 wt(x)
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Example: Consider again the code C={0000,0001,0010,0011}
d(C)=1

Notation: We write C[n,k,d] to denote a linear code of length n, dimension
k and distance d.

Linear codes are the main subject of coding theory. We can think of
a linear code as of a mapping C: {0,1}k → {0,1}n.

Remark: Unrestricted codes. A code is an arbitrary subset C ⊂ F.
The minimum distance of the code is defined as

d(C)=minx ≠ y; x,y ∈ C d(x,y)

We write C(n,M,d) to denote a code of length n, size M and distance d.
Unrestricted codes are described by listing all the codewords or describing
a way to generate the codewords. There are many interesting theoretical
problems related to nonlinear codes. In practical applications, codes are
almost always linear because of complexity constraints.
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Many ways to describe a linear code

2. A code C is a null space of its parity-check matrix H.

C={ x∈ F: H xT=0}

A code can have many different generator matrices, many different p.-c.
matrices

3. Given a code C with a parity-check matrix H, consider a bipartite
graph G=(V1∪ V2, E), where V1 are the columns of H, V2
the rows of H, and (v1,v2)∈ E iff Hv1,v2

=1. This graph
is called a Tanner graph of the code C.
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Example: Consider a [7,4,3] code 

variable
nodes
(columns) check

nodes
(rows)

Tanner graph representation

An assignment of values to the variable nodes forms a 
valid codeword if the sum at every check node=0

m1 m2
m4

m3

the same graph
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Complexity of algorithms

An important objective of coding theory is simple processing of data

We shall assume a naive model under which one operation with two
binary digits involves a unit cost.

For instance, computing z=x+y, where x,y,z ∈ (F2)n has complexity n. 
Likewise, computing (x,y) takes complexity n+(n-1)
(n multiplications, n-1 additions).

Computing the Hamming distance d(x,y) takes n operations.

Suppose we are given a code C(n,M) and a vector y∈ (F2)n, want to 
find x=arg minz∈ C d(y,z). In principle, this can take nM operations.
With n growing this becomes prohibitively complex.

We will assume that an algorithm of complexity p(n), where p
is some polynomial, is acceptable, an algorithm of exponential
complexity is “too difficult” (comparable to exhaustive search).
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Examples: Let C be a code of size |C|=M. 

1. The complexity of encoding for a linear code.
Let G be a k x n matrix over F2, let m be a k-vector. The complexity
of computing x=m G is O(k n)=O(log2 M)

2. The complexity of ML decoding is O(nM), No shortcuts are known 
in general for linear codes.

Notation: Let n→∞

f(n)=O(g(n)) ⇔ ∃ const such that f(n)· (const)g(n)    Big-O

Coding theory studies families of codes as much as (or more than) 
individual codes. The primary reason is Shannon’s theorem which says
that reliable transmission can be achieved at the expense of a growing
code length n. Exact formulation and proof given later.
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ENEE626 Lecture 3: Linear codes and their decoding

Plan
1. Linear codes over alphabets other than binary
2. Correctable errors
3. Standard array
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Nonbinary codes

Nonbinary alphabets. Examples: q=3; q=4.

Ternary alphabet Q={0,1,2} with operations mod 3.     -1=2 mod 3
The set Qn forms a linear space {x1,x2,…,x3n}

000,001,002,010,011,012,020,021,022,100,200,101,….

A ternary linear code C is a linear subspace of Qn. The concepts defined 
earlier (generator matrix, parity-check matrix, standard array, etc.) are 
extended straightforwardly.

C[4,2]   G= 0 1 2 1     H=1 1 1 0
1 1 1 1         0 2 0 1

Distance d(C)=min. # of nonzero coordinates in a nonzero code vector. 
Above: C[4,2,2]

Lemma 3.1: If G[I,A] is a generator matrix of a code C then H=[-AT, I] can 
be taken as a parity-check matrix. Here A is a kx(n-k) matrix over Q.
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Quaternary alphabet. Possibilities: {0,1,2,3} with operations mod 4;
but 2.2=0 which may be inconvenient in the study of linear codes. 
Q={0,1,ω,    }. Rules of operation:

No zero divisors; it is possible to construct a linear space Qn .

Consider a linear code C with the generator matrix

G= 0 1  1  ω
1 ω ω2 1

Work out a parity check matrix, distance, parameters [n,k,d]
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.

Definition 3.1: Support of a vector x,  supp(x)={i : xi≠ 0} 
Thus, wt(x)=|supp(x)|

Let E⊂{1,2,...,n}. For a matrix H=(h1,...,hn) with n 
columns let

H(E)={hij
, ij∈ E}

Lemma 3.2: Let x≠0 be a codeword in a linear code C with a p.-c. matrix H.
Then the columns of H(supp(x)) are linearly dependent. (Example p.4)
Proof: HxT=∑i∈ supp(x) hi =0 

Theorem 3.3: Let C be a linear code with a parity-check matrix H.
The following are equivalent:

1. distance(C)=d
2. every d-1 columns of H are linearly independent. There exist d 

linearly dependent columns

Elementary properties of linear codes
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every 2 col’s of H are l.i. (distinct)
h1+h2+h3=0 (rk(H({1,2,3})=2<3)
Hence, d(C)=3 
For instance,
1110000 is a codeword

Example

Exercise: Let E⊂{1,2,...,n}. Suppose that rk(H(E))<|E|. Is it true that there
is a codeword x with supp(x)=E? If not, what claim can be made instead?

Corollary 3.4: Let C[n,k,d] be a code. Then d· n-k+1
Proof: H is an (n-k) x n matrix. Hence any n-k+1 col’s are linearly dependent.

n-k

n n-k+1
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Let C[n,k,d] be a code

Definition 3.2: A code C corrects an error vector e (under minimum
distance decoding) if for any x∈ C

d(x,x+e) < d(y,x+e)   for all y∈ C\x
( equivalently, w(e) < d(y,x+e) )

This definition holds for all codes, linear or not

We say that a code corrects up to t errors if it corrects all error vectors 
e ∈ F with w(e) · t 

Correctable errors
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Theorem 3.5: If d(C)≥ 2t+1 then the code corrects every combination 
of · t errors.

Proof: Let x,y ∈ C, wt(e)·t

2t+1 · d(x,y) · d(x,x+e)+d(y,x+e) · t+d(y,x+e), so

d(y,x+e) > t ≥ d(x,x+e)

Main result:
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Let C be a code with distance 2t+1. All errors of wt · t are correctable.
There are errors of weight >t that are not correctable (generally, but not
always, some errors of weight >t will be correctable)

For nonlinear codes, an error vector e can be correctable for some
transmitted codevectors x and not correctable for other codevectors

Example: C={0000,1110,1100}  d=1
x=0000  e=0010 correctable
x=1110  the same e is not correctable
Definition 3.3: The set of correctable errors for a given code vector x is 
called the Voronoi region of x, denoted D(x,C)
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Let C be a code with distance 2t+1. All errors of wt · t are correctable
There are errors of weight >t that are not correctable (generally, but not
always, some errors of weight >t will be correctable)

For nonlinear codes, an error vector e can be correctable for some
transmitted codevectors x and not correctable for other codevectors

Example: C={0000,1110,1100}  d=1
x=0000  e=0010 correctable
x=1110  the same e is not correctable
Definition 3.3: The set of correctable errors for a given code vector x is 
called the Voronoi region of x, denoted D(x,C)

For linear codes the vector is either correctable or not for any transmitted 
vector of C (Voronoi regions of the codewords are congruent).

Theorem 3.6: The set of correctable errors is the same for any vector of 
a linear code
Proof: Let e be such that d(x1+e,x1)<d(x1+e,x2) for all x2≠ x1

Suppose that d(x3+e,x3)≥d(x3+e,x4) for some x3,x4
Then take y=x1+x3 so that x1=y+x3
d(x3+y+e,x3+y)=d(x1+e,x1)≥d(x1+e,x4+y), where x4+y∈ C

Contradiction
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Useful visualization

correctable errors of
weight ≥ t

correctable errors2t+1
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Building geometric intuition: what do spaces F2
n look like?

00

01

10

11

000

011

001
010

110

111

101

100

Hamming distance = number of edges in a shortest path in the
graph from x1 to x2
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00000

11111

5-dimensional Hamming cube
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00000

11111

5-dimensional Hamming cube
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8-dim hypercube projected on R3
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Given a linear code C, let E(C) be the set of correctable errors

∀e∈ E(C) wt(e)<d(e,x) for all nonzero x∈ C

Given a vector x=(xn-1,...,x1,x0)∈ F, consider
a binary number X=∑i=0

n-1 xi 2i

Definition 3.5: Lexicographic order on F. x,y∈ F
x ≺ y if the binary numbers X<Y

defines a total order on F   

00101 ≺ 01010 etc.
(intuition: that’s how words are ordered in the dictionary, except
for us all the words are of equal length)

From here onward the codes are again binary.
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Example: 00000 
00001
00010
00011
00100 
00101
00110 
00111
01000
01001
01010
01011
01100
01101
01110
01111

10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

increasing order
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Standard array for a linear [n,k] code.   
Consider the quotient space F/C. Make a 2n-k x 2k table as follows: 
the first row is the codewords with 0 on left, otherwise ordered arbitrarily
Row i begins with the vector of the smallest weight ei that is not in rows 
0,...,i-1. If there are several possibilities for ei, we take the smallest one 
lexicographically

0         x1 x2 ....    x2k-1
e1 x1+e1 x2+e1 ... x2k-1+e1
e2 x1+e2 x2+e2 ... x2k-1+e2
e3 x1+e3 x2+e3 ... x2k-1+e3
...........................
e2n-k-1 x

1
+e2n-k-1       ....      x2k-1+ e2n-k-1

Vectors 0,e1,...,e2n-k-1 are called coset leaders

Exercise: Cosets are equally sized, pairwise disjoint

Lemma 3.6 (Lagrange’s theorem) Let G be a finite group, F its subgroup.
Then |G| is a multiple of |F|.
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ENEE626 Lecture 4: Decoding of linear codes

Today's topics: 

1. Maximum likelihood decoding of linear codes
Standard array, syndrome table
information sets
information set decoding
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Theorem 4.1: E(C) = {coset leaders that are unique vectors of the smallest
weight in their cosets}

Proof: Exercise 
In particular, all errors of weight · b(d-1)/2c are unique coset leaders.
Generally, the question of locating all coset leaders is difficult.

Example 4.1:
0000 000000 011101 101010 110111   Code
0001 000001 011100 101011 110110  correctable error
0010 000010 011111 101000 110101 
0100 000100 011001 101110 110011 
1000 001000 010101 100010 111111 
1101 010000 001101 111010 100111 
1010 100000 111101 001010 010111 
0011 000011 011110 101001 110100 
0101 000101 011000 101111 110010  not correctable
0110 000110 011011 101100 110001 
1001 001001 010100 100011 111110 
1100 001100 010001 100110 111011 
1111 010010 001111 111000 100101 
1011 100001 111100 001011 010110 
1110 100100 111001 001110 010011 
0111 110000 101101 011010 000111  

recover a p.-c.m

111000
010100
100010
010001

H=

syndrome coset leader
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Lemma 4.2: Let ei be a coset leader, y ∈ C+ei be a vector from the
same coset. Then Hei

T = HyT

The vector si=Hei
T determines the coset uniquely. si is called

the syndrome (of this coset). 

Definition 4.1: The Syndrome table is an array of pairs 

(syndrome, coset leader)                     (see Example 4.1)

2n-k pairs, total size (2n-k)2n-k bits

Syndrome table

C[n,k]; H parity-check matrix

x∈ C    HxT=(000...000)T

y ∉ C   HyT=s
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Maximum likelihood (ML) decoding
(decoding by minimum distance). 

Compute the syndrome of the received vector s=H yT

Decode y → y+e (coset leader)

Complexity of ML decoding  O(n2k) time complexity
or O(n 2n-k) space complexity to store the syndrome table

Constructing the syndrome table generally is difficult (exhaustive 
search). Becomes infeasible for large codes.

Error probability of ML decoding for a linear code on a BSC(p):

Pe(x)=P(decoding incorrect | x transmitted) does not depend on x (Thm. 3.5)

Pcorrect=∑i=0
n Si pi (1-p)n-i

where Si= #(coset leaders of wt i that are correctable errors)
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Definition 4.1: Suppose that a code C is used for transmission over
a BSC. Let y ∈ {0,1}n be a received vector. The maximum likelihood 
decoding rule is a mapping ψ: {0,1}n a C such that

ψ(y)= arg max Pr[y|x] (if there are several solutions, declare an error)
x∈ C

General definition of ML decoding

In the case of linear codes, this definition is equivalent to the definition
on the previous slide.
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Information set decoding
(Another implementation of ML decoding):

Let G[g1,g2,...,gn] be a generator matrix of a linear code 
gi – a binary k-column

Definition 4.2: A subset of coordinates i1,i2,...,ik is called an information 
set if the columns gi1

,gi2
,...,gik

are linearly independent.

Definition 4.3: A code matrix is an M × n matrix whose rows are the 
codewords.

A subset i1,i2,...,ik forms an information set if the submatrix of the code
matrix with columns with these indices contains all the possible 2k rows 
(exactly once each).

Lemma 4.3: A codeword can be recovered from its k coordinates in 
any information set.
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Information set decoding: Input G, y, output c=ψML(y)
Set c=0
Take an information set (i1,...,ik), compute the codeword a s.t.

aij
=yij

, 1· j · k
If d(a,y) < d(c,y), set c ← a
Repeat for every information set.

Complexity

Lemma 4.4: Let e be a correctable coset leader. The subset S={1,2,...,n}\supp(e) 
contains an information set (information set decoding is ML)

Recall: Support of a vector supp(x)={i: xi ≠ 0}

Proof: Let Q=supp(e). HeT=∑i∈ Qeihi=s.
No e’ with supp(e’)⊂supp(e) satisfies H(e’)T=s; hence, rank(H(Q))=|Q|.
⇒ |Q| · n-k, |S|≥k
Let x1,x2∈ C, x1≠ x2 be such that projS x1=projS x2. Then 

∅ ≠ supp(x1+x2)⊂ Q
(x1+x2)+e ∈ C+e (same coset as e) but is of weight smaller than
e, contradiction.
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Example :

Subsets {1,2,3,4},{1,2,3,5}, {1,2,3,6},... are information sets

Subsets {3,7,8,9},... are not.

Generally it is difficult to find the number of information subsets of a
linear code. Some indication of what to expect is given by considering
random matrices.
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ENEE626 Lecture 5

Today's topics:

1. Rank of random binary matrices 
2. The Hamming code; perfect codes
3. The dual of the Hamming code (the simplex code)
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Rank of random matrices

Theorem 5.1:

Given a random code, can we perform information set decoding?
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Proof of part (a): 
Number of nonsingluar k x n matrices is

(2n-1)(2n-2)(2n-22)…(2n-2k-1)

In particular, let k=n. The probability that an n x n matrix over F2 is 
nonsingular equals

∏i=0
n-1 (1-2-n+i)

One can prove that this product converges as n→∞. The limiting value is 
0.2889.

N
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H3[7,4,3] is a linear code with the p.-c.matrix
0001111

H=  0110011   all nonzero 3-columns
1010101

dim(H3)=4 , distance=3
1      011

G=   1    101
1  110
1 111

Syndrome table:
syndrome     leader 

000          0000000                |Coset|=|H3|=16=2k

111          0000001                 8 cosets ⇒ 128=27

110          0000010
101          0000100          All single errors are correctable
100          0001000                     d ≥ 3=2x1+1
011          0010000 
010          0100000
001          1000000

The Hamming code



60

Spheres in F:

Bt(x)={y∈ F: d(x,y)· t}

Vol(Bt(x)) denotes the volume of Bt(x) (number of points in the ball)

Proposition:

Volume does not depend on the center



61

Spheres of radius 1 about the c-words of the Hamming code are pairwise disjoint
vol(B1)=1+7=8
total volume of spheres around the codewords=2k vol(B1)=16 x 8=128
exhausts F2

7

Notation: C(n,M,d) a binary code of length n, size M, distance d

Definition 5.1: Perfect code C(n,M,2t+1)=spheres of radius t about the 
codewords contain all the poinrs of F2

n

Perfect codes are good but rare. Linear perfect codes are all known.

The Hamming code H3 is a linear 1-error-correcting perfect code.

Generalize: Hm[2m-1,2m-m-1,3]           Hm=[all m-columns] 
Exercise: compute Gm.
Decoding: correct 1 error. W.l.o.g. assume that we transmit x=0
Transmit x, receive y=(00...010......00)

i
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HyT= 

hi
1

= hi

columns ordered lexicographically: then hi gives the number of
the coordinate in error. To decode, flip that coordinate.

No double, triple, ..., errors are correctable
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HyT= 

hi
1

= hi

columns ordered lexicographically: then hi gives the number of
the coordinate in error. To decode, flip that coordinate.

No double, triple, ..., errors are correctable

Message:
to correct 1 error
we need about log n
parity check bits

Definition 5.2: Let C be a binary linear code. The dual code is

C⊥={x∈ F: ∀c∈ C (x,c)=0}

Properties: C⊥ is an [n,n-k] linear code generated by H, the p.-c.
matrix of C.
Distance of C⊥ =? Generally not immediate. 



64

S2 S2

S2 S2

(Hm)⊥=Sm[2m-1,m,(n+1)/2=2m-1] called the simplex code

a very low-rate code with a very large distance
Exercise: Is (111...111)∈ Hm?

Lemma 5.3: d (Sm )=2m-1

Proof: Induction on m

S3= the bar means negation 1→ 0, 0→ 1

0
0
0
0
1
1
1
1

induction
step
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The term “simplex”

000

011

001
010

110

111

101

100
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ENEE626 Lecture 6:

1. Weight distribution of the Hamming code.
2. Code optimality, the Hamming and Plotkin bound
3. The binary Golay codes
4. Operations on codes.
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Let Aw=|{x∈C: weight(x)=w}|

Definition 6.1: The vector (A0=1,A1,…,Aw,…,An) is called the 
weight distribution of the code C.

Clearly, A1=A2=…=Ad-1=0

Theorem 6.1: Let C=Hm. 
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In principle, such recurrences can  be used to compute the next weight 
coefficients in Hm, but there is a more efficient way (MacWilliams’ theorem, 
lect.7)

Interlude: The Hat Problem
n=2m-1 people are given hats one each, either red or blue.
At the same time they all walk into a room and see the hats of everyone 
else except their own. Then they guess simultaneously the color of their
own hats (if unsure they can pass). If those who do not pass all make a 
correct guess, the entire group win $1 each, otherwise they lose $1 each.

They can follow a pre-arranged strategy. Is there a strategy that will
win in more than 50% of color deals in the long run? 
(Was popular a few years ago;                           ran ran a front-page article)
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Theorem 6.2: The Hamming code is optimal.

Proof: Let C[n,k,d] be a code, then               

Definition 6.2: A code of length n with M codewords and distance d 
is called optimal if there does not exist an (n,M+1,d) code.
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Generally, if C is optimal, C⊥ is not always optimal. However, this
is true for Sm

Theorem 6.3 (the Plotkin bound) Let C[n,k,d] be a linear code. Then

In the [2m-1,m,2m-1] simplex code, 2d/(2d-n)=(n+1)/(n+1-n)=n+1=M
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The Plotkin bound

It is also true for unrestricted codes, by the following argument.
Let C(n,M,d) be a code. Compute the average distance between x,y∈ C.
Let λi be the # of 1's in the ith column of the code matrix.
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The Golay code: another binary perfect code

There exists a code G23[23,12,7] that corrects 3 errors

The only other binary linear perfect codes that exist are trivial:
[n,n,1] (n ≥ 1), [2m+1,1,2m+1] (m≥1)
Moreover, the only possibility for a nonlinear code to be perfect is
that its parameters coincide with the parameters of Hm
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Operations on codes

Hm, ext[2m,2m-m-1,4]

[16,11,4]

Hm[2m-1,2m-m-1,3]

[15,11,3]

[2m-1,2m-m-2,4]
[15,10,4]

even-weight subcode

shorten by x1=0lengthen

deleting
odd weights

append 115

ov
era
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rity
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pu
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tur
ing
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Let C[n,k,d ≥ 2] be a linear code.
Assume that the code (matrix) does not contain all-zero columns
•Puncturing x a proj {1,...,n} \i x       (projection)

C[n,k,d]→ C’[n-1,k,≥ d-1]

•Shortening C[n,k,d] → C’[n-1,k-1,≥ d]
Lemma 6.4 (Lagrange’s theorem). A column in the code matrix contains 
2k-1 0’s and 2k-1 1’s.
To shorten C, take 2k-1 codevectors with a 0 in coord. i, remove
the rest of C, delete that coordinate.

•Even weight subcode C[n,k,d=2t+1] → C’[n,k-1,d+1]
delete all odd-weight codewords

•Adding overall parity check C[n,k,d=2t+1] → Cext[n+1,k,2t+2]
Cext is called the extended code

Exercise. Let C be optimal. Is Cext also optimal?

•Lengthening C[n,k,d] → C’[n+1,k+1]
add an overall parity check; append the vector 1n+1 to the basis of Cext

Operations on codes: Definitions



75

More ways to create a new code from known codes

|u|u+v| construction. Let A[n,k1,d1] and B[n,k2,d2] be
binary linear codes. 

C=(|u|u+v|, u ∈ A, v ∈ B)

Lemma 6.5: C is a [2n,k1+k2,min(2d1,d2)] code

Proof: Let c ∈ C, c ≠ 0, v=0, then  wt(c) ≥ 2d1
On the other hand, if v ≠ 0, then 

wt(c)=wt(u)+wt(u+v) ≥ wt(u)-wt(u)+wt(v)=wt(v) ≥ d2
(triangle inequality wt(x+y) · wt(x)+wt(y) )

Example: Let A=Sm,ext, A[2m,m+1,2m-1]
B[2m,1,2m]

Then C[2m+1,m+2,2m]=Sm+1,ext
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ENEE626 Lecture 7: Weight distributions.
The MacWilliams theorem

Weight distributions 
Bhattacharyya bound
The MacWilliams theorem 
Fourier transform
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C a linear code, Aw =|{x∈C, wt(x)=w}|
(A0,A1,…, An) weight distribution of a linear code C

Define the generating function of weights (the weight enumerator)
A(x,y) = ∑i=0

n Ai xn-iyi

H3[7,4,3]                  i  0  1  2  3  4  5  6  7     A(x,y)=x7+7x4y3+7x3y4+y7

1  0  0  7  7  0  0  1
S3[7,3,4]                   i  0  1  2  3  4  5  6  7     A⊥(x,y)=x7+7x3y4

1  0  0  0  7  0  0  0
The weight enumerator of the code dual to C will be denoted by

A⊥(x,y); A⊥(x,y)=∑i Ai
⊥ xn-iyi,

Weight distributions
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Motivation to study weight distributions

2. Error detection. Suppose an [n,k,d] linear code C with weight enumerator 
A(x,y) is transmitted over a binary symmetric channel BSC(p) and used for 
error detection. Namely, the received vector is tested for being a code 
vector; if not, an error is declared. The probability of undetected error equals

Pud(C)=∑i=1
n Aipi(1-p)n-i=A(1-p,p)-(1-p)n

For instance,  let C be the [7,4,3] Hamming code H3.

1. The perfect code theorem from last lecture is proved using general
properties of weight distriburions.

0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.1

0.12

p

Pud(H3)
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Motivation to study weight distributions

3. Error prob. of ML decoding. Suppose an [n,k,d] linear code with weight 
enumerator A(x,y) is transmitted over a binary symmetric channel BSC(p) and 
decoded by Max-likelihood (syndrome decoding). Let Pe(c) be the probability 
of error conditioned on transmitting the codeword c;

Pe(C):=2-k ∑c∈ C Pe(c)
Then

Pe(C) · A( 1,2√p(1-p) )-1 (Bhattacharyya bound)

Proof. Suppose that the transmitted vector is 0 (does not matter);
Let D(0) be the Voronoi region of 0. Let Pe,c’(0)=Pr(decode to c’|0)

N
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Example: The [6,2,3] code C from Example 4.1

# correctable coset leaders   S0=1; S1=6; S2=6
weight distribution: A3=A4=A5=1
Bhattacharyya bound: Pe(C)=γ3(1+γ+γ2), γ=2(p(1-p))1/2

Exact value: Pe(C)=1-((1-p)6+6p(1-p)5+6p2(1-p)4)

0.025 0.05 0.075 0.1 0.125 0.15

0.2

0.4

0.6

0.8

1

bound

exact

Pe(C)

p

Note: there are better bounds for Pe(C) for large p
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Theorem 7.1:(MacWilliams)  A⊥(x,y)=2-k A(x+y,x-y)
So A(x,y)=2-n+k A⊥(x+y,x-y)

Example: compute the weight enumerator of H3 from the w.e. of S3:

A⊥(x+y,x-y)=(x+y)7+7(x+y)3(x-y)4=8x7+56 x4y3+56x3y4+8y7

=2-7+4 A(x,y)

Main result about the weight distributions
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Nonbinary codes

Let C be a linear code of length n over Fq
(means that x,y∈ C ⇒ ax+by∈ C)

For instance, F3={0,1,2} with operations mod 3

Definition 7.3. Let  x=(x1,x2,...,xn) be a vector. The Hamming weight
wt(x)=|{i: xi ≠ 0}|. The Hamming distance

d(x,y)=wt(x-y)

The weight distribution of the code C 
(A0,A1,....,An)

The weight enumerator A(x,y)=∑i=0
n Ai xn-iyi

Definition 7.4: The dual code C⊥={y∈ (Fq)n :  ∀x∈ C (x,y)=0} 
where (x,y)=∑i=1

n xi yi (operations in Fq)

Theorem 8.4 (MacWilliams): A⊥(x,y)= q-k A(x+(q-1)y,x-y) 

Both proofs carry over to the general case


