ENEE626, CMSC858B, AMSC698B Error Correcting Codes

Instructor: Alexander Barg (abarg@umd.edu) Office: AVW2361
Course goals: To introduce the main concepts of coding theory and the body of its central results. To prepare a starting point for advanced studies in coding theory and to point the students to possible research areas

Prerequisites for the course

The main prerequisite is mathematical maturity, in particular, interest in learning new mathematical concepts. No familiarity with information theory and communications-related courses will be assumed. On the other hand, the students are expected to be comfortable with linear spaces, elementary probability and calculus, and elementary concepts in discrete mathematics such as binomial coefficients and an assortment of related facts. There is no required textbook.

The web site http://hww.ece.umd.edu/-abarg/626 contains a detailed list of topics, problems, schedule of exams, grading policy, reference books.

Part I. Introduction to coding theory

Plan for today:

1. Syllabus, logistics
2. Model of a communication system
3. Binary Symmetric Channel
4. Coding for error correction
5. Notation and language

Digital communication: Computer networks, wireless telephony, data and media storage, RF communication (terrestrial, space)

Transmission over communication channels is prone to errors. background noise, mutual interference between users, attenuation in channels, mechanical damage, multipath propagation, ...

Model of a communication system

more detailed:

Model of a communication system

more detailed:
we are interested in

Assume transmission with binary antipodal signals over a Gaussian channel

Suppose that the received signal y is decoded as

$$
x=\operatorname{sgn}(y) s
$$

The probability of error is computed as

$$
p=P(y<0 \mid s)=P(y>0 \mid-s)=\Phi\left(\frac{-s}{\sigma}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{-s} e^{-x^{2} / 2 \sigma^{2}} d x
$$

Binary Symmetric Channel (BSC)

transmissions are independent
p is called the transition (cross-over) probability

Much of coding theory deals with error correction for transmission over the BSC. This will also be our main underlying model.

Binary Symmetric Channel (BSC)

transmissions are independent
p is called the transition (cross-over) probability

Much of coding theory deals with error correction for transmission over the BSC. This will also be our main underlying model.

The erasure channel

Main example: internet traffic

Messages = binary strings Ex.: 101
k bits $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ word, vector $\quad m_{i} \in\{0,1\}$
encoding: message \rightarrow codeword. purpose: error correction
Example: 2 messages 0,1.

$$
\begin{aligned}
& \text { no coding: } 0 \rightarrow \text { channel } \rightarrow 1 \text { (message lost) } \\
& \text { encode } 0 \rightarrow 000 \quad C=\{000,111\} \text { - a code } \\
& 1 \rightarrow 111 \\
& 000 \rightarrow \text { channel } \rightarrow 010 \\
& \operatorname{Pr}[0 \mid 010]=p(1-p)^{2} \operatorname{Pr}[0] / \operatorname{Pr}[010] ; \operatorname{Pr}[1 \mid 010]=p^{2}(1-p) \operatorname{Pr}[1] / \operatorname{Pr}[010] \\
& \frac{\operatorname{Pr}[0 \mid 010]}{\operatorname{Pr}[1 \mid 010]}=(1-p) / p>1 \text { if } p<1 / 2 \text {. }
\end{aligned}
$$

Thus, if $p<1 / 2, \operatorname{Pr}[0 \mid 010]>\operatorname{Pr}[1 \mid 010]$.
Conclude: decoding by maximum a posteriori probability (MAP) will recover the message correctly

Definition 1.2: Hamming distance between two vectors $\boldsymbol{x}, \boldsymbol{y}$

$$
d\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|
$$

Transmit $\mathrm{M}=2^{\mathrm{k}}$ messages with a code $\mathrm{C}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{M}}\right\}$
y received from the channel. Decode to

$$
\mathbf{x}=\underset{\mathbf{x}_{\mathrm{i}} \in \mathrm{C}}{\operatorname{argmin}} \mathrm{~d}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right) \quad \text { (minimum distance decoding) }
$$

(if there are several such \mathbf{x}, declare an error)

Observation: on the $\operatorname{BSC}(p), p<1 / 2$, the probability $\operatorname{Pr}[\mathrm{e}]$ of error $\mathrm{e}=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)$ decreases as the \# of 1's among $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$ increases. Hence, decoding by minimum distance is equivalent to MAP decoding

Conclude: it's a good idea in many cases to have codewords far apart

Bits of notation

Finite sets A, B, C, F, \ldots
The number of elements in A is called the size of A, denoted $|A|$ or \#(A).
$\mathbb{F}_{2}=\{0,1\}$ the binary field; $F=\mathbb{F}_{2}{ }^{n}-n$-dim linear space over \mathbb{F}_{2}
$\mathbf{x}, \mathbf{y}, \ldots$ - vectors (often in F) (row vectors); \mathbf{x}^{\top} transpose (column vect.)
$0=0^{n}$ the all-zero vector; likewise, ($0 i 1 j \ldots$) is a generic shorthand for a vector $(\mathbf{x}, \mathbf{y})=\sum_{i=0}{ }^{n} x_{i} y_{i}$ dot product $d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$ Hamming distance $w(\mathbf{x})$ (sometimes $w t(\mathbf{x})$) the weight of \mathbf{x}, i.e., $\mathrm{d}(\mathbf{x}, 0)$
$\mathrm{G}, \mathrm{H}, \mathrm{A}, \ldots$ matrices
$d(C)=$ the distance of the code C
$\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ a linear code of length n , dimension k , distance d
$C(n, M, d)$ a code, not necessarily linear, of length n, size M, distance d

Mathematical concepts used in coding theory

The primary language is that of linear algebra.
Linear algebra deals with geometry of linear spaces and their transformations
A linear space L is the most familiar concept, such as $\mathbb{R}^{2}, \mathbb{R}^{3}$ and the likes It is formed of a field of constants (e.g., \mathbb{R}) and vectors over it Vectors obey the natural rules:
they can be added to form another vector; they can be stretched by multiplying them by a constant.

To describe L it is convenient to choose a basis (a frame). The number of vectors in the basis is called the dimension of L.
The space does not depend on the choice of the basis although the coordinates of the vectors generally change if one passes to another basis

A subspace M of L can be described by any of its bases or as a set of solutions of a system of equations (kernel of a linear operator)

The quotient space L / M consists of M and its shifts by vectors from LIM Linear spaces of coding theory live over finite fields (such as $\mathbb{F}_{2}=\{0,1\}$).

Reminder (cont'd): binomial coefficients

(a) Permutations: (abc, acb, bac, bca, cba, cab)

$$
n(n-1)(n-2) \ldots 2.1=n!(n \text { factorial })
$$

(b) The number of ways to choose an ordered k-tuple out of an n-set

$$
n(n-1)(n-2) \ldots(n-k+2)(n-k+1)=(n)_{k}
$$

(c) The number of unordered k-tuples out of an n-set.

$$
\begin{gathered}
\text { notation: }\binom{n}{k}=\frac{(n)_{k}}{k!} \\
\\
|\{\mathbf{x} \in \mathrm{F}: \mathrm{wt}(\mathbf{x})=\mathrm{k}\}|=\binom{n}{k} \\
\end{gathered}
$$

Extend the definition:

$$
\binom{x}{k}=\left\{\begin{array}{ll}
\frac{x(x-1) \ldots(x-k+1)}{k!} & \text { if } k \geq 1 \text { integer } \\
1 & \text { if } k=0 \\
0 & \text { all other cases }
\end{array} \quad x \in \mathbb{R}\right.
$$

See probl. 12, h/work 1

Operating with binary data

XOR	AND		
+0	1	0	0

Examples of codes:

```
m}000\mapsto00000
m
m}010\mapsto01011
m
m
m
m
m
```

code \mathscr{C} can correct one error, can be used to transmit $8=2^{3}$ messages (3 bits of information)

```
\(\mathbf{m}_{6} 101 \mapsto 101010\)
\(\mathrm{m}_{7} 110 \mapsto 110011\)
\(\mathrm{m}_{8} 111 \mapsto 111100\)
```

Repetition code $\{000 \ldots 00,111 \ldots 11\} \mathrm{k}=1$
Single parity-check code $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}\right\}$ formed of all codewords of length n with an even number of ones. $M=2^{n-1}$

$$
\text { n=3: }\{000,011,101,110\}
$$

Goal: construct codes of arbitrary length that correct a given number of errors, equipped with a simple decoding procedure

In this course we will study the following families of codes

1. Linear codes
2. Reed-Solomon codes
3. BCH codes
4. Concatenated codes
5. Low-density parity-check (LDPC) codes
6. Reed-Muller codes (time permitting)

ENEE626 Lecture 2: Linear codes

1. Linear codes: examples, definition
2. Generator and parity-check matrices
3. Hamming weight
4. Algorithmic complexity

Linear codes

Code \mathscr{C}

$\mathbf{m}_{1} 000$	$\mapsto 000000$
$\mathbf{m}_{2} 001$	$\mapsto 001111$
$\mathbf{m}_{3} 010$	$\mapsto 010110$
$\mathbf{m}_{4} 011$	$\mapsto 011001$
$\mathbf{m}_{5} 100$	$\mapsto 100101$
$\mathbf{m}_{6} 101$	$\mapsto 101010$
$\mathbf{m}_{7} 110$	$\mapsto 110011$
$\mathbf{m}_{8} 111$	$\mapsto 111100$

Verify that all the codewords of \mathscr{C} can be computed by multiplying

$$
\mathbf{x}_{\mathrm{i}}=\mathbf{m}_{\mathrm{i}} \mathrm{G}, \text { where }
$$

$$
G=\left(\begin{array}{l}
100101 \\
010110 \\
001111
\end{array}\right)
$$

$$
m_{6} G=(101) G=101010=x_{6}
$$

Therefore, \mathscr{C} is closed under addition:

$$
x_{i}+x_{j}=\left(m_{i}+m_{j}\right) G=m_{k} G=x_{k} \in \mathscr{C}
$$

\mathscr{C} is a linear code (a linear subspace of $\left.\left(\mathbb{F}_{2}\right)^{n}\right)$

$\mathrm{F}=\left(\mathbb{F}_{2}\right)^{\mathrm{n}}$ is a linear space:

- F is an abelian group under addition
- Its unit is the all-zero vector $0=(00 \ldots 000)$
- Multiplication by scalars is distributive

$$
\begin{aligned}
& c(x+y)=c x+c y \\
& (a+b) x=a x+b x
\end{aligned}
$$

- Multiplication is associative:

$$
(a b) x=a(b x)
$$

Definition 2.1: A linear subspace of F is called a binary linear code
For instance, the code \mathscr{C} above is linear
Let A be a linear code, $k=\operatorname{dim}$ A. A matrix whose rows are the basis vectors of A is called a generator matrix of the code.

G (kxn)-matrix

Example: let $n=4$, consider 4-dim space F 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010 1011
1100
1101
1110
1111
n is called the length of the code.
Consider the code $A=\{00000,11111\}$ of length 5 , dimension 1

$$
\mathrm{G}=[11111]
$$

(the repetition code).
Single parity-check code $B, n=5 \quad G=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]$

Definition 2.2: The Hamming weight of a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ is defined as

$$
w(x)=\left|\left\{i: x_{i}=1\right\}\right|
$$

Exercise: The sum of two even-weight vectors has even weight.
Thus, the code B is formed of $2^{4}=16$ vectors of even weight (satisfies an overall parity check)

The parity-check matrix of a code

Consider a code of length 6: $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right)$ Suppose that

$$
\left\{\begin{array}{cr}
x_{1}+x_{2}+x_{3}+x_{4} & =0 \\
x_{2}+x_{3}+x_{5} & =0 \\
x_{1}+x_{3} & +x_{6}=0
\end{array}\right.
$$

Assign any values to $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$, solve for $\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}$
Parity-check equations
$H=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right] \quad H \mathbf{x}^{\top}=0$
Definition 2.3: H is called a parity-check matrix of the code
Another definition of a linear code: $\mathrm{C}=\left\{\mathbf{x} \in \mathrm{F}: \mathrm{H} \mathbf{x}^{\top}=0\right\}$

Notation: $\mathrm{C}[\mathrm{n}, \mathrm{k}]$ denotes a linear code of length n and dimension k

$$
(0 \leq k \leq n)
$$

Let $\mathrm{C}[\mathrm{n}, \mathrm{k}]$ be a code. The encoding mapping can be written as

rank (G) $=\mathrm{k} \Rightarrow$ there exist k linearly independent columns Suppose w.l.o.g. that they are columns $1,2, \ldots, k$:

$$
G=\left[I_{k} \mid A\right] \text {, where } A \text { is some } k x(n-k) \text { matrix }
$$

then the code vector that corresponds to $\left(m_{1}, \ldots, m_{k}\right)$ has the form

$$
x=\left(m_{1}, m_{2}, \ldots m_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

the message bits show directly in the code vector In such a situation we say that the code is defined in a systematic form

Proposition 2.1: Any [n, k] linear code can be written in a systematic form Indeed, take the k columns of G that have rank k ; by elementary operations diagonalize this submatrix

Example: The matrix

$$
\mathrm{G}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

defines the single-parity-check code of length 5 in a systematic form: the last 4 coordinates carry the message, the first coordinate corresponds to the parity check. For instance, the message (1101) is encoded as (11101)

Lemma 2.2: Let $\mathrm{G}=\left[l_{k} \mid A\right]$ be a $\mathrm{k} x \mathrm{n}$ generator matrix of a code C . Then $\mathrm{H}=\left[\mathrm{A}^{\top} \mid \|_{n-k}\right]$ is a parity-check matrix of C .

$$
\text { Proof: } H G^{T}=\left[A^{T} \mid I_{n-k}\right]\left[I_{k} \mid A\right]^{T}=A^{T} I_{k}+I_{n-k} A^{T}=0
$$

Note that we can have message symbols in any 4 of the 5 coordinates:
for instance, the matrix $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1\end{array}\right]$ defines the same code as in Example 2.2,
which has been written in a systematic form to show the message bits in coordinates 1,3,4,5.

Encoding in a systematic form

$G=\left[I_{k} \mid A\right], A$ a $k x(n-k)$ matrix with rows $\mathbf{a}_{1}, \ldots \mathbf{a}_{k}$
$\mathbf{m G}=\left(m_{1}, \ldots, m_{k}, \mathbf{a}\right)$, where $\mathbf{a}=\sum_{i} m_{i} a_{i}$
Let $H=\left[A^{\top} \mid I_{n-k}\right]$ be the p.-c. matrix. The parity check symbols are computed from the equations $H x^{\top}=0$, where $\mathbf{x}=\left(m_{1}, \ldots, m_{k}, x_{1}, x_{2}, \ldots, x_{n-k}\right)$. Thus,
$\begin{array}{lr}m_{1} a_{1,1}+m_{2} a_{2,1}+\ldots+m_{k} a_{k, 1}+x_{1} & =0 \\ m_{1} a_{1,2}+m_{2} a_{2,2}+\ldots+m_{k} a_{k, 2}+x_{2} & =0 \\ \ldots & \\ m_{1} a_{1, n-k}+m_{2} a_{2, n-k}+\ldots+m_{k} a_{k, n-k} & +x_{n-k}=0\end{array}$
Encoding in a systematic form is easier than in a general form

Definition 2.4: Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathrm{~F}$. The Hamming distance

$$
d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\#\left\{i: x_{1, i} \neq x_{2, i}\right\}
$$

Exercises: 1. Prove that $\mathrm{d}(\cdot, \cdot)$ is a metric on F.
2. Prove that d is translation invariant, i.e.,

$$
d\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathrm{d}\left(\mathbf{x}_{1}+\mathbf{y}, \mathbf{x}_{2}+\mathbf{y}\right)
$$

where $y \in F$ is an arbitrary vector.

Take $\mathbf{y}=\mathbf{x}_{2}$, then $\mathrm{d}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\mathrm{d}\left(\mathbf{x}_{1}+\mathbf{x}_{2}, \mathbf{0}\right)$
Call $d(\mathbf{x}, \mathbf{0})$ the weight of \mathbf{x}, denoted $\mathrm{wt}(\mathbf{x})$
$w t(x)=\#\left\{i: x_{i} \neq 0\right\}$
Definition 2.5: Let C be a linear code. The distance of C is defined as

$$
\mathrm{d}(\mathrm{C})=\min _{\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{C}, \mathrm{x}_{1} \neq \mathrm{x}_{2}} \mathrm{~d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

Exercise: $d(C)=\min _{x \in C \backslash 0} \mathrm{wt}(x)$

Example: Consider again the code $\mathrm{C}=\{0000,0001,0010,0011\}$ $\mathrm{d}(\mathrm{C})=1$

Notation: We write $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ to denote a linear code of length n , dimension k and distance d.

Linear codes are the main subject of coding theory. We can think of a linear code as of a mapping C : $\{0,1\}^{k} \rightarrow\{0,1\}^{n}$.

Remark: Unrestricted codes. A code is an arbitrary subset $C \subset F$.
The minimum distance of the code is defined as

$$
d(C)=\min _{x \neq y ; x, y \in C} d(x, y)
$$

We write $C(n, M, d)$ to denote a code of length n, size M and distance d. Unrestricted codes are described by listing all the codewords or describing a way to generate the codewords. There are many interesting theoretical problems related to nonlinear codes. In practical applications, codes are almost always linear because of complexity constraints.

Many ways to describe a linear code

1. A code \mathscr{C} is a row space of its generator matrix G
$G=\left(\begin{array}{c}\mathbf{g}_{1} \\ \mathbf{g}_{2} \\ \vdots \\ \mathbf{g}_{k}\end{array}\right) \quad \mathscr{C}=\left(\sum_{i=1}^{k} \lambda_{i} \mathbf{g}_{i}\right)$
2. A code \mathcal{C} is a null space of its parity-check matrix H .

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathrm{F}: \mathrm{H} \mathbf{x}^{\top}=0\right\}
$$

A code can have many different generator matrices, many different p.-c. matrices
3. Given a code \mathcal{C} with a parity-check matrix H , consider a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$, where V_{1} are the columns of H, V_{2} the rows of H , and $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in \mathrm{E}$ iff $\mathrm{H}_{\mathrm{v}_{1}, v_{2}}=1$. This graph is called a Tanner graph of the code \mathcal{C}.

Example: Consider a [7,4,3] code
$G=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right] \quad H=\left[\begin{array}{ccccccc}m_{1} & m_{2} & m_{3} & m_{4} & & & \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
Another p.-c. matrix of \mathcal{H}_{3} :

Tanner graph representation

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

An assignment of values to the variable nodes forms a valid codeword if the sum at every check node=0

Complexity of algorithms

An important objective of coding theory is simple processing of data
We shall assume a naive model under which one operation with two binary digits involves a unit cost.

For instance, computing $\mathbf{z}=\mathbf{x}+\mathbf{y}$, where $\mathbf{x}, \mathbf{y}, \mathbf{z} \in\left(\mathbb{F}_{2}\right)^{n}$ has complexity n . Likewise, computing (\mathbf{x}, y) takes complexity $\mathrm{n}+(\mathrm{n}-1)$ (n multiplications, $\mathrm{n}-1$ additions).

Computing the Hamming distance $\mathrm{d}(\mathrm{x}, \mathrm{y})$ takes n operations.
Suppose we are given a code $C(n, M)$ and a vector $y \in\left(\mathbb{F}_{2}\right)^{n}$, want to find $\mathbf{x}=\arg \min _{\mathbf{z} \in \mathrm{C}} \mathrm{d}(\mathbf{y}, \mathbf{z})$. In principle, this can take nM operations. With n growing this becomes prohibitively complex.

We will assume that an algorithm of complexity $p(n)$, where p is some polynomial, is acceptable, an algorithm of exponential complexity is "too difficult" (comparable to exhaustive search).

Notation: Let $\mathrm{n} \rightarrow \infty$

$$
f(n)=O(g(n)) \Leftrightarrow \exists \text { const such that } f(n) \leq(\text { const }) g(n) \quad \text { Big- } O
$$

Examples: Let C be a code of size $|\mathrm{C}|=\mathrm{M}$.

1. The complexity of encoding for a linear code.

Let G be a $k x n$ matrix over \mathbb{F}_{2}, let \mathbf{m} be a k-vector. The complexity of computing $\mathbf{x}=\mathbf{m} G$ is $O(k n)=O\left(\log ^{2} M\right)$
2. The complexity of $M L$ decoding is $\mathrm{O}(\mathrm{nM})$, No shortcuts are known in general for linear codes.

Coding theory studies families of codes as much as (or more than) individual codes. The primary reason is Shannon's theorem which says that reliable transmission can be achieved at the expense of a growing code length n . Exact formulation and proof given later.

ENEE626 Lecture 3: Linear codes and their decoding

Plan

1. Linear codes over alphabets other than binary
2. Correctable errors
3. Standard array

Nonbinary codes

Nonbinary alphabets. Examples: q=3; q=4.
Ternary alphabet $\mathcal{Q}=\{0,1,2\}$ with operations $\bmod 3 . \quad-1=2 \bmod 3$
The set \mathcal{Q}^{n} forms a linear space $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{3} \mathrm{n}\right\}$ $000,001,002,010,011,012,020,021,022,100,200,101, \ldots$.

A ternary linear code C is a linear subspace of $\mathcal{Q}^{\text {n }}$. The concepts defined earlier (generator matrix, parity-check matrix, standard array, etc.) are extended straightforwardly.
$\left.C[4,2] \quad G=\left[\begin{array}{llll}0 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1\end{array}\right] \quad H=\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1\end{array}\right]$
Distance $\mathrm{d}(\mathrm{C})=\mathrm{min}$. \# of nonzero coordinates in a nonzero code vector. Above: C[4,2,2]

Lemma 3.1: If $\mathrm{G}[\mathrm{I}, \mathrm{A}]$ is a generator matrix of a code C then $\mathrm{H}=\left[-\mathrm{A}^{\top}, I\right]$ can be taken as a parity-check matrix. Here A is a $\mathrm{kx}(\mathrm{n}-\mathrm{k})$ matrix over \mathcal{Q}.

Quaternary alphabet. Possibilities: $\{0,1,2,3\}$ with operations $\bmod 4$; but 2.2=0 which may be inconvenient in the study of linear codes. $\mathcal{Q}=\{0,1, \omega, \bar{\omega}\}$. Rules of operation:

$$
\begin{array}{c|cccc}
+ & 0 & 1 & \omega & \bar{\omega} \\
\hline 0 & 0 & 1 & \omega & \bar{\omega} \\
1 & 1 & 0 & \bar{\omega} & \omega \\
\omega & \omega & \bar{\omega} & 0 & 1 \\
\bar{\omega} & \bar{\omega} & \omega & 1 & 0
\end{array}
$$

.	0	1	ω	$\bar{\omega}$
0	0	0	0	0
1	0	1	ω	$\bar{\omega}$
ω	0	ω	$\bar{\omega}$	1
$\bar{\omega}$	0	$\bar{\omega}$	1	ω

No zero divisors; it is possible to construct a linear space \mathcal{Q}^{n}.
Consider a linear code C with the generator matrix

$$
G=\left[\begin{array}{cccc}
0 & 1 & 1 & \omega \\
1 & \omega & \omega^{2} & 1
\end{array}\right]
$$

Work out a parity check matrix, distance, parameters [n,k,d]

Elementary properties of linear codes

Definition 3.1: Support of a vector $\mathbf{x}, \operatorname{supp}(\mathbf{x})=\left\{\mathrm{i}: \mathrm{x}_{\mathrm{i}} \neq 0\right\}$
Thus, wt(\mathbf{x})=|supp $(\mathbf{x}) \mid$
Let $\mathrm{E} \subset\{1,2, \ldots, \mathrm{n}\}$. For a matrix $\mathrm{H}=\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{\mathbf{n}}\right)$ with n columns let

$$
H(E)=\left\{h_{i, j}, i_{j} \in E\right\}
$$

Lemma 3.2: Let $\mathbf{x} \neq \mathbf{0}$ be a codeword in a linear code C with a p.-c. matrix H .
Then the columns of $\mathrm{H}(\operatorname{supp}(\mathbf{x}))$ are linearly dependent. (Example p.4)
Proof: $\mathbf{H x}^{\top}=\sum_{\mathrm{i} \in \operatorname{supp}(\mathbf{x})} \mathbf{h}_{\mathrm{i}}=0$
Theorem 3.3: Let C be a linear code with a parity-check matrix H .
The following are equivalent:

1. distance(C)=d
2. every $\mathrm{d}-1$ columns of H are linearly independent. There exist d linearly dependent columns

Corollary 3.4: Let $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ be a code. Then $\mathrm{d} \leq \mathrm{n}-\mathrm{k}+1$
Proof: H is an ($n-k$) $\times n$ matrix. Hence any $n-k+1$ col's are linearly dependent.

Example

$$
H=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

every 2 col's of H are l.i. (distinct)
$\mathbf{h}_{1}+\mathbf{h}_{2}+\mathbf{h}_{3}=0(\mathrm{rk}(\mathrm{H}(\{1,2,3\})=2<3)$
Hence, $\mathrm{d}(\mathrm{C})=3$
For instance,
1110000 is a codeword

Exercise: Let $E \subset\{1,2, \ldots, n\}$. Suppose that $r k(H(E))<|E|$. Is it true that there is a codeword \mathbf{x} with $\operatorname{supp}(\mathbf{x})=E$? If not, what claim can be made instead?

Correctable errors

Let $C[n, k, d]$ be a code
Definition 3.2: A code C corrects an error vector e (under minimum distance decoding) if for any $\mathbf{x} \in \mathrm{C}$
$\mathrm{d}(\mathbf{x}, \mathbf{x}+\mathbf{e})<\mathrm{d}(\mathbf{y}, \mathbf{x}+\mathbf{e})$ for all $\mathbf{y} \in \mathrm{Clx}$
(equivalently, $\mathrm{w}(\mathbf{e})<\mathrm{d}(\mathbf{y}, \mathbf{x}+\mathbf{e})$)
This definition holds for all codes, linear or not
We say that a code corrects up to t errors if it corrects all error vectors $\mathbf{e} \in F$ with $w(\mathbf{e}) \leq t$

Main result:

Theorem 3.5: If $\mathrm{d}(\mathrm{C}) \geq 2 \mathrm{t}+1$ then the code corrects every combination of $\leq t$ errors.

Proof: Let $\mathbf{x}, \mathbf{y} \in \mathrm{C}, \mathrm{wt}(\mathrm{e}) \leq \mathrm{t}$

$$
\begin{gathered}
2 t+1 \leq d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{x}+\mathbf{e})+d(\mathbf{y}, \mathbf{x}+e) \leq t+d(\mathbf{y}, \mathbf{x}+\mathbf{e}), \text { so } \\
d(\mathbf{y}, \mathbf{x}+e)>t \geq d(\mathbf{x}, \mathbf{x}+e)
\end{gathered}
$$

Let C be a code with distance $2 t+1$. All errors of $w t \leq t$ are correctable. There are errors of weight >t that are not correctable (generally, but not always, some errors of weight $>t$ will be correctable)

For nonlinear codes, an error vector e can be correctable for some transmitted codevectors \mathbf{x} and not correctable for other codevectors

Example: $\mathrm{C}=\{0000,1110,1100\} \mathrm{d}=1$
$\mathbf{x}=0000 \mathrm{e}=0010$ correctable
$\mathbf{x}=1110$ the same \mathbf{e} is not correctable
Definition 3.3: The set of correctable errors for a given code vector \mathbf{x} is called the Voronoi region of \mathbf{x}, denoted $\mathrm{D}(\mathbf{x}, \mathrm{C})$

Let C be a code with distance $2 \mathrm{t}+1$. All errors of $\mathrm{wt} \leq \mathrm{t}$ are correctable There are errors of weight $>t$ that are not correctable (generally, but not always, some errors of weight $>t$ will be correctable)

For nonlinear codes, an error vector \mathbf{e} can be correctable for some transmitted codevectors \mathbf{x} and not correctable for other codevectors

Example: $C=\{0000,1110,1100\} d=1$
x=0000 e=0010 correctable
$\mathbf{x}=1110$ the same \mathbf{e} is not correctable
Definition 3.3: The set of correctable errors for a given code vector \mathbf{x} is called the Voronoi region of \mathbf{x}, denoted $\mathrm{D}(\mathbf{x}, \mathrm{C})$

For linear codes the vector is either correctable or not for any transmitted vector of \mathbf{C} (Voronoi regions of the codewords are congruent).

Theorem 3.6: The set of correctable errors is the same for any vector of a linear code
Proof: Let \mathbf{e} be such that $\mathrm{d}\left(\mathbf{x}_{1}+\mathbf{e}, \mathbf{x}_{1}\right)<\mathrm{d}\left(\mathbf{x}_{1}+\mathbf{e}, \mathbf{x}_{2}\right)$ for all $\mathrm{x}_{2} \neq \mathbf{x}_{1}$
Suppose that $\mathrm{d}\left(\mathbf{x}_{3}+\mathbf{e}, \mathrm{x}_{3}\right) \geq \mathrm{d}\left(\mathbf{x}_{3}+\mathbf{e}, \mathrm{x}_{4}\right)$ for some $\mathrm{x}_{3}, \mathrm{x}_{4}$
Then take $\mathbf{y}=\mathbf{x}_{1}+\mathbf{x}_{3}$ so that $\mathbf{x}_{1}=\mathbf{y}+\mathrm{x}_{3}$
$d\left(x_{3}+y+e, x_{3}+y\right)=d\left(x_{1}+e, x_{1}\right) \geq d\left(x_{1}+e, x_{4}+y\right)$, where $x_{4}+y \in C$
Contradiction

Useful visualization

Building geometric intuition: what do spaces $\mathbb{F}_{2}{ }^{n}$ look like?

Hamming distance $=$ number of edges in a shortest path in the graph from x_{1} to \mathbf{x}_{2}

5-dimensional Hamming cube

5-dimensional Hamming cube

8-dim hypercube projected on R^{3}

From here onward the codes are again binary.

Given a linear code C, let $E(C)$ be the set of correctable errors

$$
\forall_{\mathbf{e} \in \mathrm{E}(\mathrm{C})} \mathrm{wt}(\mathbf{e})<\mathrm{d}(\mathbf{e}, \mathbf{x}) \text { for all nonzero } \mathbf{x} \in \mathrm{C}
$$

Given a vector $\mathbf{x}=\left(\mathrm{x}_{\mathrm{n}-1}, \ldots, \mathrm{x}_{1}, \mathrm{x}_{0}\right) \in \mathrm{F}$, consider
a binary number $X=\sum_{i=0}{ }^{n-1} x_{i} 2^{i}$
Definition 3.5: Lexicographic order on $F . \mathbf{x}, \mathbf{y} \in F$ $\mathbf{x} \prec \mathbf{y}$ if the binary numbers $X<Y$
defines a total order on F
$00101 \prec 01010$ etc.
(intuition: that's how words are ordered in the dictionary, except for us all the words are of equal length)

Example:	00000	10000	
	00001	10001	
	00010	10010	
	00011	10011	
	00100	10100	
	00101	10101	
	00110	10110	
	00111	10111	
	01001	11000	increasing order
	01010	11001	
	01011	11010	
	01100	11011	
	01101	11101	
	01110	11110	
	01111	11111	

Standard array for a linear $[\mathrm{n}, \mathrm{k}]$ code.

Consider the quotient space F/C. Make a $2^{n-k} \times 2^{k}$ table as follows: the first row is the codewords with 0 on left, otherwise ordered arbitrarily Row i begins with the vector of the smallest weight \mathbf{e}_{i} that is not in rows $0, \ldots, i-1$. If there are several possibilities for \mathbf{e}_{i}, we take the smallest one lexicographically

0	\mathbf{x}_{1}	\mathbf{x}_{2}	\ldots	$\mathbf{x}_{2 k_{-1}}$
\mathbf{e}_{1}	$\mathbf{x}_{1}+\mathbf{e}_{1}$	$\mathbf{x}_{2}+\mathbf{e}_{1} \ldots$	$\mathbf{x}_{2 k_{-1}}+\mathbf{e}_{1}$	
\mathbf{e}_{2}	$\mathbf{x}_{1}+\mathbf{e}_{2}$	$\mathbf{x}_{2}+\mathbf{e}_{2} \ldots \mathbf{x}_{2 k_{-1}}+\mathbf{e}_{2}$		
\mathbf{e}_{3}	$\mathbf{x}_{1}+\mathbf{e}_{3}$	$\mathbf{x}_{2}+\mathbf{e}_{3} \ldots$	$\mathbf{x}_{2 k-1}+\mathbf{e}_{3}$	

$\mathbf{e}_{2^{n-k}-1} \mathbf{x}_{1}+\mathbf{e}_{2^{n-k_{-1}}} \quad \cdots \quad \mathbf{x}_{2^{k}-1}+\mathbf{e}_{2^{n-k}-1}$
Vectors $0, \mathbf{e}_{1}, \ldots, \mathbf{e}_{2^{n-k}-1}$ are called coset leaders
Exercise: Cosets are equally sized, pairwise disjoint
Lemma 3.6 (Lagrange's theorem) Let G be a finite group, F its subgroup.
Then $|\mathrm{G}|$ is a multiple of $\mid \mathrm{F}$.

ENEE626 Lecture 4: Decoding of linear codes

Today's topics:

1. Maximum likelihood decoding of linear codes Standard array, syndrome table information sets information set decoding

Theorem 4.1: $\mathrm{E}(\mathrm{C})=$ \{coset leaders that are unique vectors of the smallest weight in their cosets\}
Proof: Exercise
In particular, all errors of weight $\leq\lfloor(\mathrm{d}-1) / 2\rfloor$ are unique coset leaders.
Generally, the question of locating all coset leaders is difficult.

Syndrome table

$\mathrm{C}[\mathrm{n}, \mathrm{k}]$; H parity-check matrix

$$
\begin{array}{ll}
\mathbf{x} \in \mathrm{C} & \mathrm{H} \mathbf{x}^{\top}=(000 \ldots 000)^{\top} \\
\mathbf{y} \notin \mathrm{C} & \mathrm{Hy}
\end{array}
$$

Lemma 4.2: Let \mathbf{e}_{i} be a coset leader, $\mathbf{y} \in \mathrm{C}+\mathbf{e}_{\mathrm{i}}$ be a vector from the same coset. Then $\mathrm{He}_{\mathrm{i}}{ }^{\top}=\mathrm{Hy}^{\top}$

The vector $\mathbf{s}_{\mathrm{i}}=\mathrm{He} \mathbf{e}_{\mathrm{i}}{ }^{\top}$ determines the coset uniquely. \mathbf{s}_{i} is called the syndrome (of this coset).

Definition 4.1: The Syndrome table is an array of pairs

> (syndrome, coset leader) (see Example 4.1)
2^{n-k} pairs, total size $(2 n-k) 2^{n-k}$ bits

Maximum likelihood (ML) decoding (decoding by minimum distance).
 Compute the syndrome of the received vector $s=H y^{\top}$ Decode $\mathbf{y} \rightarrow \mathbf{y} \mathbf{e}$ (coset leader)

Complexity of ML decoding $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{k}}\right)$ time complexity or $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{nk}}\right)$ space complexity to store the syndrome table

Constructing the syndrome table generally is difficult (exhaustive search). Becomes infeasible for large codes.

Error probability of ML decoding for a linear code on a BSC(p):
$\mathrm{P}_{\mathrm{e}}(\mathbf{x})=\mathrm{P}$ (decoding incorrect $\mid \mathbf{x}$ transmitted) does not depend on \mathbf{x} (Thm. 3.5)

$$
P_{\text {correct }}=\sum_{i=0}{ }^{n} S_{i} p^{i}(1-p)^{n-i}
$$

where $\mathrm{S}_{\mathrm{i}}=$ \#(coset leaders of wt i that are correctable errors)

General definition of ML decoding

Definition 4.1: Suppose that a code C is used for transmission over a BSC. Let $\mathbf{y} \in\{0,1\}^{n}$ be a received vector. The maximum likelihood decoding rule is a mapping $\psi:\{0,1\}^{\mathrm{n}} \mapsto \mathrm{C}$ such that
$\psi(\mathbf{y})=\arg \max \operatorname{Pr}[\mathbf{y} \mid \mathbf{x}]$ (if there are several solutions, declare an error) $x \in C$

In the case of linear codes, this definition is equivalent to the definition on the previous slide.

Information set decoding

(Another implementation of ML decoding):

Let $\mathrm{G}\left[\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{\mathrm{n}}\right]$ be a generator matrix of a linear code $g_{i}-$ a binary k-column

Definition 4.2: A subset of coordinates $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}$ is called an information set if the columns $\mathbf{g}_{i_{1}}, \mathbf{g}_{i_{2}}, \ldots, \mathbf{g}_{i_{k}}$ are linearly independent.

Definition 4.3: A code matrix is an $\mathrm{M} \times \mathrm{n}$ matrix whose rows are the codewords.

A subset $\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{k}$ forms an information set if the submatrix of the code matrix with columns with these indices contains all the possible 2^{k} rows (exactly once each).

Lemma 4.3: A codeword can be recovered from its k coordinates in any information set.

Information set decoding: Input G, \mathbf{y}, output $\mathbf{c}=\psi_{\text {мL }}(\mathbf{y})$ Set c=0
Take an information set $\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$, compute the codeword a s.t.

$$
\mathrm{a}_{\mathrm{i},}=\mathrm{y}_{\mathrm{i},}, 1 \leq \mathrm{j} \leq \mathrm{k}
$$

If $d(\mathbf{a}, \mathbf{y})<d(\mathbf{c}, \mathbf{y})$, set $\mathbf{c} \leftarrow \mathbf{a}$ Repeat for every information set.

Complexity $O\left(n^{3}\binom{n}{k}\right)$
Recall: Support of a vector $\operatorname{supp}(\mathbf{x})=\left\{i: x_{i} \neq 0\right\}$
Lemma 4.4: Let \mathbf{e} be a correctable coset leader. The subset $S=\{1,2, \ldots, n\} \backslash \operatorname{supp}(\mathbf{e})$ contains an information set (information set decoding is ML)

Proof: Let $\mathrm{Q}=\operatorname{supp}(\mathbf{e}) . \mathrm{He}^{\top}=\sum_{i \in Q} \mathrm{e}_{\mathbf{i}} \mathbf{h}_{\mathbf{i}}=\mathbf{s}$.
No e' with $\operatorname{supp}\left(\mathbf{e}^{\prime}\right) \subset \operatorname{supp}(\mathbf{e})$ satisfies $H\left(\mathbf{e}^{\prime}\right)^{\top}=\mathbf{s}$; hence, $\operatorname{rank}(H(Q))=|Q|$.
$\Rightarrow|Q| \leq n-k,|S| \geq k$
Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathrm{C}, \mathbf{x}_{1} \neq \mathbf{x}_{2}$ be such that $\operatorname{proj}_{\mathrm{S}} \mathbf{x}_{1}=$ proj $_{\mathrm{S}} \mathbf{x}_{2}$. Then

$$
\emptyset \neq \operatorname{supp}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) \subset Q
$$

$\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)+\mathbf{e} \in \mathrm{C}+\mathbf{e}$ (same coset as \mathbf{e}) but is of weight smaller than e, contradiction.

$$
\begin{aligned}
& \text { Example: } \quad G=\left[\begin{array}{l}
010011000 \\
011100100 \\
111100010 \\
111010001
\end{array}\right] \\
& \text { There are }\binom{9}{4}=126 \text { 4-subsets of }\{1,2, \ldots, 9\}
\end{aligned}
$$

Subsets $\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,6\}, \ldots$ are information sets
Subsets $\{3,7,8,9\}, \ldots$ are not.
Generally it is difficult to find the number of information subsets of a linear code. Some indication of what to expect is given by considering random matrices.

ENEE626 Lecture 5

Today's topics:

1. Rank of random binary matrices
2. The Hamming code; perfect codes
3. The dual of the Hamming code (the simplex code)

Rank of random matrices

Given a random code, can we perform information set decoding?

Theorem 5.1:

Let G be a random $k \times n$ binary matrix whose entries are chosen independently of each other with $p(1)=p(0)=1 / 2$. Let $k=R n, R<1$.

Then $\lim _{n \rightarrow \infty} \operatorname{Pr}[\operatorname{rk}(G)=k] \rightarrow 1$

Proof of part (a):
Number of nonsingluar kxn matrices is

$$
\begin{aligned}
& \left(2^{n-1}\right)\left(2^{n}-2\right)\left(2^{n-} 2^{2}\right) \ldots\left(2^{n-2} 2^{k-1}\right) \\
& \operatorname{Pr}[\operatorname{rk}(G)=k]=\frac{\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-2^{2}\right) \ldots\left(2^{n}-2^{k-1}\right)}{2^{n k}}=\prod_{i=0}^{k-1}\left(1-2^{-n+i}\right) \\
& >1-\sum_{i=0}^{k-1} 2^{-n+i}=1-2^{-n+k-1}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{k-1}}\right) \\
& n \rightarrow \infty, \frac{k}{n}=R<1 \\
& =1-2^{-n(1-R)-1} \cdot 2\left(1-2^{-k}\right) \rightarrow 1
\end{aligned}
$$

In particular, let $\mathrm{k}=\mathrm{n}$. The probability that an $\mathrm{n} \times \mathrm{n}$ matrix over \mathbb{F}_{2} is nonsingular equals

$$
\prod_{i=0}^{n-1}\left(1-2^{-n+i}\right)
$$

One can prove that this product converges as $n \rightarrow \infty$. The limiting value is 0.2889 .

The Hamming code

$\mathscr{H}_{3}[7,4,3]$ is a linear code with the p.-c.matrix

$$
\mathrm{H}=\left(\begin{array}{l}
0001111 \\
0110011 \\
1010101
\end{array}\right) \text { all nonzero 3-columns }
$$

$\operatorname{dim}\left(\mathscr{H}_{3}\right)=4$, distance $=3$

$$
G=\left(\begin{array}{ll}
1 & \\
1 & 011 \\
1 & 101 \\
& 1 \\
110 \\
& 1
\end{array}\right)
$$

Syndrome table:

syndrome 000 leader	\|Coset $\left\|=\left\|\mathscr{H}_{3}\right\|=16=2^{k}\right.$	
111	0000000	8 cosets $\Rightarrow 128=2^{7}$
110	0000010	
101	0000100	All single errors are correctable
100	0001000	$d \geq 3=2 \times 1+1$
011	0010000	
010	0100000	
001	1000000	

Spheres in F:

$B_{t}(x)=\{y \in F: d(x, y) \leq t\}$
$\operatorname{Vol}\left(B_{t}(\mathbf{x})\right)$ denotes the volume of $B_{t}(\mathbf{x})$ (number of points in the ball)
Proposition: $\operatorname{vol}\left(B_{t}(\mathrm{x})\right)=\sum_{i=0}^{t}\binom{n}{i}$
Volume does not depend on the center

Spheres of radius 1 about the c-words of the Hamming code are pairwise disjoint $\operatorname{vol}\left(\mathrm{B}_{1}\right)=1+7=8$ total volume of spheres around the codewords $=2^{k}$ vol $\left(B_{1}\right)=16 \times 8=128$ exhausts $\mathbb{F}_{2}{ }^{7}$
Notation: C(n,M,d) a binary code of length n, size M, distance d

Definition 5.1: Perfect code $\mathrm{C}(\mathrm{n}, \mathrm{M}, 2 \mathrm{t}+1)=$ spheres of radius t about the codewords contain all the poinrs of $\mathbb{F}_{2}{ }^{n}$

$$
M \sum_{i=0}^{t}\binom{n}{i}=2^{n}
$$

Perfect codes are good but rare. Linear perfect codes are all known.
The Hamming code \mathscr{H}_{3} is a linear 1 -error-correcting perfect code.
Generalize: $\mathscr{H}_{\mathrm{m}}\left[2^{\mathrm{m}}-1,2^{\mathrm{m}}-\mathrm{m}-1,3\right] \quad \mathscr{H}_{\mathrm{m}}$ =[all m-columns]
Exercise: compute G_{m}.
Decoding: correct 1 error. W.I.o.g. assume that we transmit $\mathbf{x}=0$ Transmit \mathbf{x}, receive $\mathbf{y}=(00 \ldots 010 \ldots . . .00)$

columns ordered lexicographically: then \mathbf{h}_{i} gives the number of the coordinate in error. To decode, flip that coordinate.

No double, triple, ..., errors are correctable

Message:

to correct 1 error we need about log n parity check bits
columns ordered lexicographically: then \mathbf{h}_{i} gives the number of the coordinate in error. To decode, flip that coordinate.

No double, triple, ..., errors are correctable
Definition 5.2: Let C be a binary linear code. The dual code is

$$
C^{\perp}=\left\{x \in F: \forall_{\mathbf{c} \in \mathrm{C}}(\mathbf{x}, \mathbf{c})=0\right\}
$$

Properties: C^{\perp} is an $[n, n-k]$ linear code generated by H, the p.-c. matrix of C .
Distance of $C^{\perp}=$? Generally not immediate.
$\left(\mathscr{H}_{\mathrm{m}}\right)^{\perp}=\mathrm{S}_{\mathrm{m}}\left[2^{\mathrm{m}}-1, \mathrm{~m},(\mathrm{n}+1) / 2=2^{\mathrm{m}-1}\right]$ called the simplex code
a very low-rate code with a very large distance
Exercise: Is (111...111) $\in \mathscr{H}_{\mathrm{m}}$?
Lemma 5.3: $\mathrm{d}\left(\mathrm{S}_{\mathrm{m}}\right)=2^{\mathrm{m}-1}$
Proof: Induction on m

$$
\begin{aligned}
& G_{2}=\left[\begin{array}{l}
011 \\
101
\end{array}\right], \begin{array}{l}
000 \\
011 \\
101 \\
110
\end{array} \\
& G_{3}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
& G_{2} & & 0 & & G_{2} & \\
& & & 0 & & &
\end{array}\right] \\
& \text { induction } \\
& \text { step } \\
& \text { the bar means negation } 1 \rightarrow 0,0 \rightarrow 1
\end{aligned}
$$

The term "simplex"

ENEE626 Lecture 6:

1. Weight distribution of the Hamming code.
2. Code optimality, the Hamming and Plotkin bound
3. The binary Golay codes
4. Operations on codes.

Let $\mathrm{A}_{\mathrm{w}}=\{\mathbf{x} \in \mathrm{C}$: weight $(\mathbf{x})=\mathrm{w}\} \mid$
Definition 6.1: The vector $\left(A_{0}=1, A_{1}, \ldots, A_{w}, \ldots, A_{n}\right)$ is called the weight distribution of the code C.

Clearly, $A_{1}=A_{2}=\ldots=A_{d-1}=0$
Theorem 6.1: Let $\mathrm{C}=\mathscr{H}_{\mathrm{m}}$.

$$
\begin{gathered}
A_{3}=\frac{1}{3}\binom{n}{2}=\frac{n(n-1)}{6} \\
A_{4}=\frac{1}{4}\left(\binom{n}{3}-A_{3}\right)
\end{gathered}
$$

Proof: Let $w t(x)=2$, then \exists unique $\mathbf{c} \in C$ with $d(c, x)=1$ (C is perfect); so $w t(c)=3$.
3 different x give rise to c. So $A_{3}=\frac{1}{3}\binom{n}{2}$.
Similarly, let $\operatorname{wt}(\mathrm{x})=3$, then either $\mathrm{x} \in C$ or \exists unique $\mathbf{c} \in C$ with $\mathrm{d}(\mathbf{c}, \mathrm{x})=1$, so $\mathrm{wt}(\mathrm{c})=4$. Hence $A_{3}+4 A_{4}=\binom{n}{3}$.

QED

$$
A_{4}\left(\mathcal{H}_{m, \mathrm{ext}}\right)=A_{3}\left(\mathcal{H}_{m}\right)+A_{4}\left(\mathcal{H}_{m}\right)=\frac{2^{m-2}\left(2^{m}-1\right)\left(2^{m-1}-1\right)}{3}
$$

In principle, such recurrences can be used to compute the next weight coefficients in \mathscr{H}_{m}, but there is a more efficient way (MacWilliams' theorem, lect.7)

Interlude: The Hat Problem

$\mathrm{n}=2^{\mathrm{m}}-1$ people are given hats one each, either red or blue.
At the same time they all walk into a room and see the hats of everyone else except their own. Then they guess simultaneously the color of their own hats (if unsure they can pass). If those who do not pass all make a correct guess, the entire group win $\$ 1$ each, otherwise they lose $\$ 1$ each.

They can follow a pre-arranged strategy. Is there a strategy that will win in more than 50% of color deals in the long run?
(Was popular a few years ago; ©fy New Hork Timara ran a front-page article)

Definition 6.2: A code of length n with M codewords and distance d is called optimal if there does not exist an ($\mathrm{n}, \mathrm{M}+1, \mathrm{~d}$) code.

Theorem 6.2: The Hamming code is optimal.
Proof: Let $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ be a code, then
$2^{k} \operatorname{vol}\left(B_{\left\lfloor\frac{d-1}{2}\right\rfloor}\right) \leq 2^{n}$ (the Hamming bound)
In particular, for $\mathcal{H}_{m}, t=1$ and $2^{k}(n+1)=2^{2^{m}-m-1} \cdot 2^{m}=2^{n}$, so the bound is met with equality.

Generally, if C is optimal, C^{\perp} is not always optimal. However, this is true for S_{m}

Theorem 6.3 (the Plotkin bound) Let $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ be a linear code. Then

$$
k \leq \log _{2} \frac{2 d}{2 d-n}
$$

Proof: Consider the ($M=2^{k} \times n$) code matrix. The total \sharp of 1 's in it is $\leq n M / 2$ There are $M-1$ nonzero rows in the matrix, so the average weight of a nonzero row is $\bar{w} \leq \frac{n M}{2(M-1)}$. Also $d \leq \bar{w}$. QED
In the $\left[2^{m}-1, m, 2^{m-1}\right]$ simplex code, $2 d /(2 d-n)=(n+1) /(n+1-n)=n+1=M$

The Plotkin bound

It is also true for unrestricted codes, by the following argument.
Let $C(n, M, d)$ be a code. Compute the average distance between $x, y \in C$. Let λ_{i} be the \# of 1 's in the ith column of the code matrix.

$$
\begin{gathered}
\sum_{\mathbf{x}, \mathbf{y} \in C} \mathrm{~d}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} 2 \lambda_{i}\left(M-\lambda_{i}\right) \leq \sum 2 \frac{M}{2}\left(M-\frac{M}{2}\right)=\frac{n M^{2}}{2} \\
M(M-1) d \leq \frac{n M^{2}}{2} \\
M \leq \frac{2 d}{2 d-n}
\end{gathered}
$$

The Golay code: another binary perfect code

There exists a code $\mathscr{G}_{23}[23,12,7]$ that corrects 3 errors
Verify that \mathcal{G}_{23} is perfect

$$
2^{12}\left(1+23+\binom{23}{2}+\binom{23}{3}\right)=2^{23}
$$

Let $\mathcal{G}_{24}[24,12,8]=\mathcal{G}_{23, \text { ext }}$ The code \mathcal{G}_{24} is self-dual: $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
Both codes have a number of other remarkable properites (see the reference books)

The only other binary linear perfect codes that exist are trivial: $[n, n, 1](n \geq 1),[2 m+1,1,2 m+1](m \geq 1)$
Moreover, the only possibility for a nonlinear code to be perfect is that its parameters coincide with the parameters of \mathcal{H}_{m}

Operations on codes

Operations on codes: Definitions

Let $C[n, k, d \geq 2]$ be a linear code.
Assume that the code (matrix) does not contain all-zero columns
-Puncturing $\mathbf{x} \mapsto \operatorname{proj}_{\{1, \ldots, n\} \backslash i} \mathbf{X} \quad$ (projection)
$\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}] \rightarrow \mathrm{C}^{\prime}[\mathrm{n}-1, \mathrm{k}, \geq \mathrm{d}-1]$
-Shortening $\quad \mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}] \rightarrow \mathrm{C}^{\prime}[\mathrm{n}-1, \mathrm{k}-1, \geq \mathrm{d}]$
Lemma 6.4 (Lagrange's theorem). A column in the code matrix contains $2^{k-1} 0$'s and $2^{k-1} 1$'s.
To shorten C, take 2^{k-1} codevectors with a 0 in coord. i, remove the rest of C , delete that coordinate.
-Even weight subcode $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}=2 \mathrm{t}+1] \rightarrow \mathrm{C}^{\prime}[\mathrm{n}, \mathrm{k}-1, \mathrm{~d}+1]$
delete all odd-weight codewords
-Adding overall parity check $\mathrm{C}[\mathrm{n}, \mathrm{k}, \mathrm{d}=2 \mathrm{t}+1] \rightarrow \mathrm{C}_{\text {ext }}[\mathrm{n}+1, \mathrm{k}, 2 \mathrm{t}+2]$
$\mathrm{C}_{\text {ext }}$ is called the extended code
Exercise. Let C be optimal. Is $\mathrm{C}_{\text {ext }}$ also optimal?
\cdot-Lengthening $C[n, k, d] \rightarrow C^{\prime}[n+1, k+1]$
add an overall parity check; append the vector 1^{n+1} to the basis of $C_{e x t}$

More ways to create a new code from known codes
$|\mathrm{u}| \mathrm{u}+\mathrm{v} \mid$ construction. Let $\mathrm{A}\left[\mathrm{n}, \mathrm{k}_{1}, \mathrm{~d}_{1}\right]$ and $\mathrm{B}\left[\mathrm{n}, \mathrm{k}_{2}, \mathrm{~d}_{2}\right]$ be binary linear codes.

$$
\mathrm{C}=(|\mathbf{u}| \mathbf{u}+\mathbf{v} \mid, \mathbf{u} \in \mathrm{A}, \mathbf{v} \in \mathrm{~B})
$$

Lemma 6.5: C is a $\left[2 \mathrm{n}, \mathrm{k}_{1}+\mathrm{k}_{2}, \min \left(2 \mathrm{~d}_{1}, \mathrm{~d}_{2}\right)\right]$ code
Proof: Let $\mathbf{c} \in \mathrm{C}, \mathbf{c} \neq 0, \mathbf{v}=0$, then $\mathrm{wt}(\mathrm{c}) \geq 2 \mathrm{~d}_{1}$
On the other hand, if $v \neq 0$, then

$$
\begin{aligned}
\mathrm{wt}(\mathbf{c})= & \mathrm{wt}(\mathbf{u})+w t(\mathbf{u}+\mathbf{v}) \geq \operatorname{wt}^{(\mathbf{u})-\mathrm{wt}(\mathbf{u})+w t(\mathbf{v})=w t(\mathbf{v}) \geq d_{2}} \\
& \text { (rriangle inequality wt }(\mathbf{x}+\mathbf{y}) \leq w t(\mathbf{x})+w t(\mathbf{y}))
\end{aligned}
$$

Example: Let $\mathrm{A}=\mathrm{S}_{\mathrm{m}, \mathrm{ext}}, \mathrm{A}\left[2^{\mathrm{m}}, \mathrm{m}+1,2^{\mathrm{m}-1}\right]$
$\mathrm{B}\left[2^{\mathrm{m}}, 1,2^{\mathrm{m}}\right]$
Then $C\left[2^{m+1}, \mathrm{~m}+2,2^{\mathrm{m}}\right]=\mathrm{S}_{\mathrm{m}+1, \text { ext }}$

ENEE626 Lecture 7: Weight distributions. The MacWilliams theorem

Weight distributions
Bhattacharyya bound
The MacWilliams theorem
Fourier transform

Weight distributions

C a linear code, $A_{w}=|\{x \in C, w t(x)=w\}|$
$\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ weight distribution of a linear code C
Define the generating function of weights (the weight enumerator)

$$
A(x, y)=\sum_{i=0}^{n} A_{i} x^{n-i} y^{i}
$$

The weight enumerator of the code dual to C will be denoted by $A^{\perp}(x, y) ; A^{\perp}(x, y)=\sum_{i} A_{i}{ }^{\perp} x^{n-i} y^{i}$,

Motivation to study weight distributions

1. The perfect code theorem from last lecture is proved using general properties of weight distriburions.
2. Error detection. Suppose an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ linear code C with weight enumerator $\mathrm{A}(\mathrm{x}, \mathrm{y})$ is transmitted over a binary symmetric channel BSC(p) and used for error detection. Namely, the received vector is tested for being a code vector; if not, an error is declared. The probability of undetected error equals

$$
P_{u d}(C)=\sum_{i=1}{ }^{n} A_{i} p^{\prime}(1-p)^{n-i}=A(1-p, p)-(1-p)^{n}
$$

For instance, let C be the $[7,4,3]$ Hamming code \mathcal{H}_{3}.

Motivation to study weight distributions

3. Error prob. of ML decoding. Suppose an [$\mathrm{n}, \mathrm{k}, \mathrm{d}]$ linear code with weight enumerator $A(x, y)$ is transmitted over a binary symmetric channel BSC(p) and decoded by Max-likelihood (syndrome decoding). Let $\mathrm{P}_{\mathrm{e}}(\mathbf{c})$ be the probability of error conditioned on transmitting the codeword \mathbf{c};

$$
P_{\mathrm{e}}(\mathrm{C}):=2^{-k} \sum_{\mathrm{c} \in \mathrm{C}} \mathrm{P}_{\mathrm{e}}(\mathbf{c})
$$

Then

$$
P_{e}(C) \leq A(1,2 \sqrt{p(1-p)})-1(\text { Bhattacharyya bound })
$$

Proof. Suppose that the transmitted vector is 0 (does not matter);
Let $D(0)$ be the Voronoi region of 0 . Let $P_{e, c^{\prime}}(0)=\operatorname{Pr}\left(\right.$ decode to $\left.\mathbf{c}^{\prime} \mid 0\right)$

$$
\begin{aligned}
& P_{e}(0)=\sum_{\mathbf{c}^{\prime} \in C \backslash 0} P_{e, \mathbf{c}^{\prime}}(0) \\
& =\sum_{\mathbf{c}^{\prime} \in C \backslash 0} \sum_{\mathbf{y} \in D\left(\mathbf{c}^{\prime}\right)} P(\mathbf{y} \mid 0) \leq \sum_{\mathbf{c}^{\prime} \in C \backslash 0} \sum_{\mathbf{y} \in D\left(\mathbf{c}^{\prime}\right)} \sqrt{P(\mathbf{y} \mid 0) P\left(\mathbf{y} \mid \mathbf{c}^{\prime}\right)} \\
& =\sum_{\mathbf{c}^{\prime} \in C \backslash 0} \sum_{\mathbf{y} \in D\left(\mathbf{c}^{\prime}\right)} \prod_{i=1}^{n} \sqrt{P\left(y_{i} \mid 0\right) P\left(y_{i} \mid c_{i}\right)} \leq \sum_{\mathbf{c}^{\prime} \in C \backslash 0} \prod_{i=1}^{n} \sum_{y=0}^{1} \sqrt{P(y \mid 0) P\left(y \mid c_{i}^{\prime}\right)} \\
& =\sum_{\mathbf{c}^{\prime} \in C \backslash 0}(2 \sqrt{p(1-p)})^{\mathrm{wt}\left(\mathbf{c}^{\prime}\right)}=\sum_{w=1}^{n} A_{w}(2 \sqrt{p(1-p)})^{w}
\end{aligned}
$$

Example: The [6,2,3] code C from Example 4.1
\# correctable coset leaders $\mathrm{S}_{0}=1 ; \mathrm{S}_{1}=6 ; \mathrm{S}_{2}=6$
weight distribution: $\mathrm{A}_{3}=\mathrm{A}_{4}=\mathrm{A}_{5}=1$
Bhattacharyya bound: $P_{e}(C)=\gamma^{3}\left(1+\gamma+\gamma^{2}\right), \gamma=2(p(1-p))^{1 / 2}$
Exact value: $P_{e}(C)=1-\left((1-p)^{6}+6 p(1-p)^{5}+6 p^{2}(1-p)^{4}\right)$

Note: there are better bounds for $\mathrm{P}_{\mathrm{e}}(\mathrm{C})$ for large p

Main result about the weight distributions

Theorem 7.1:(MacWilliams) $A^{\perp}(x, y)=2^{-k} A(x+y, x-y)$
So $A(x, y)=2^{-n+k} A^{\perp}(x+y, x-y)$
Example: compute the weight enumerator of \mathscr{H}_{3} from the w.e. of $\mathscr{\mathscr { J }}_{3}$:

$$
\begin{aligned}
A^{\perp}(x+y, x-y) & =(x+y)^{7}+7(x+y)^{3}(x-y)^{4}=8 x^{7}+56 x^{4} y^{3}+56 x^{3} y^{4}+8 y^{7} \\
& =2^{-7+4} A(x, y)
\end{aligned}
$$

Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function
E.g., $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2} x_{3} ; f(011)=1$

Let $(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}$ be the dot product
Definition 7.1: The Fourier (Hadamard) transform of f

$$
\widehat{f}(\mathbf{u})=\sum_{\mathbf{v} \in \mathbb{F}_{2}^{n}}(-1)^{(\mathbf{u}, \mathbf{v})} f(\mathbf{v})
$$

Lemma 7.2: Let $C[n, k]$ be a linear code. Then

$$
\sum_{\mathbf{u} \in C^{\perp}} f(\mathbf{u})=\frac{1}{2^{k}} \sum_{\mathbf{u} \in C} \widehat{f}(\mathbf{u})
$$

Proof:

$$
\begin{aligned}
\sum_{\mathbf{u} \in C} \widehat{f}(u) & =\sum_{\mathbf{u} \in C} \sum_{\mathbf{v} \in \mathbb{F}_{2}^{n}}(-1)^{(\mathbf{u}, \mathbf{v})} f(\mathbf{v})=\sum_{\mathbf{v} \in \mathbb{F}_{2}^{n}} f(\mathbf{v}) \sum_{\mathbf{u} \in C}(-1)^{(\mathbf{u}, \mathbf{v})} \\
& =\sum_{\mathbf{v} \in C^{\perp}} f(\mathbf{v}) \sum_{\mathbf{u} \in C}(-1)^{(\mathbf{u}, \mathbf{v})}+\sum_{\mathbf{v} \notin C^{\perp}} f(\mathbf{v}) \sum_{\mathbf{u} \in C}(-1)^{(\mathbf{u}, \mathbf{v})} \\
& =|C| \sum_{\mathbf{v} \in C^{\perp}} f(\mathbf{v})
\end{aligned}
$$

Proof [of the MacWilliams theorem]: take in the lemma $f(\mathbf{u})=x^{n-\mathrm{wt}(\mathbf{u})} y^{\mathrm{wt}(\mathbf{u})}$ Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$

$$
\begin{aligned}
& \widehat{f}(\mathbf{u})=\sum_{\mathbf{v} \in F}(-1)^{u_{1} v_{1}+\cdots+u_{n} v_{n}} \prod_{i=1}^{n} x^{1-v_{i}} y^{v_{i}}=\sum_{v_{1}=0}^{1} \sum_{v_{2}=0}^{1} \cdots \sum_{v_{n}=0}^{1} \prod_{i=1}^{n}(-1)^{u_{i} v_{i}} x^{1-v_{i}} y^{v_{i}} \\
&=\prod_{i=1}^{n} \sum_{z=0}^{1}(-1)^{u_{i} z} x^{1-z} y^{z}=\prod_{i=1}^{n}\left(x+(-1)^{u_{i}} y\right)=(x+y)^{n-\mathrm{wt}(\mathbf{u})}(x-y)^{\mathrm{wt}(\mathbf{u})}
\end{aligned}
$$

Then

$$
\begin{gathered}
\sum_{\mathbf{x} \in C^{\perp}} f(\mathbf{x})=\frac{1}{2^{k}} \sum_{\mathbf{y} \in C} \widehat{f}(\mathbf{y}) \\
\sum_{\mathbf{x} \in C^{\perp}} x^{n-\mathrm{wt}(\mathrm{x})} y^{\mathrm{wt}(\mathrm{x})}=\frac{1}{2^{k}} \sum_{\mathbf{y} \in C}(x+y)^{n-\mathrm{wt}(\mathrm{y})}(x-y)^{\mathrm{wt}(\mathrm{y})} \\
\sum_{w=0}^{n} A_{w}^{\perp} x^{n-w} y^{w}=\frac{1}{2^{k}} \sum_{w=0}^{n} A_{w}(x+y)^{n-w}(x-y)^{w} \\
2^{k} A^{\perp}(x, y)=A(x+y, x-y)
\end{gathered}
$$

Nonbinary codes

Let C be a linear code of length n over \mathbb{F}_{q} (means that $x, y \in C \Rightarrow a x+b y \in C$)
For instance, $\mathbb{F}_{3}=\{0,1,2\}$ with operations $\bmod 3$
Definition 7.3. Let $\mathbf{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a vector. The Hamming weight $w t(x)=\left|\left\{i: x_{i} \neq 0\right\}\right|$. The Hamming distance

$$
d(\mathbf{x}, \mathbf{y})=w t(\mathbf{x}-\mathbf{y})
$$

The weight distribution of the code C

$$
\left(A_{0}, A_{1}, \ldots, A_{n}\right)
$$

The weight enumerator $A(x, y)=\sum_{i=0}{ }^{n} A_{i} x^{n-i y i}$
Definition 7.4: The dual code $\mathrm{C}^{\perp}=\left\{\mathbf{y} \in\left(\mathbb{F}_{\mathrm{q}}\right)^{n}: \forall_{\mathrm{x} \in \mathrm{C}}(\mathbf{x}, \mathbf{y})=0\right\}$ where $(\mathbf{x}, \mathbf{y})=\sum_{i=1}{ }^{n} x_{i} y_{i}$ (operations in \mathbb{F}_{q})

Theorem 8.4 (MacWilliams): $\mathrm{A}^{\perp}(\mathrm{x}, \mathrm{y})=\mathrm{q}^{-\mathrm{k}} \mathrm{A}(\mathrm{x}+\mathrm{y}, \mathrm{x}-(\mathrm{q}-1) \mathrm{y})$
Both proofs carry over to the general case

Nonlinear binary codes

A code $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{\mathrm{m}}\right\}$ is an arbitrary subset of $\mathrm{F}=\{0,1\}^{\mathrm{n}}$
$\{011010,101110,101001\}$ is a $(6,3,3)$ code
The concept that parallels weight distribution in the case of nonlinear codes is defined as follows.

Definition 7.5: The distance distribution of the code C is given by
($B_{0}, B_{1}, \ldots, B_{n}$), where

$$
B_{w}=(1 / M)\left\{\left(\mathbf{c}_{i} ; \mathbf{c}_{\mathrm{j}}\right) \in \mathrm{C} \times \mathrm{C}: \mathrm{d}\left(c_{i} ; c_{\mathrm{j}}\right)=\mathrm{w}\right\}
$$

What is B_{0} ?

