ENEE324. Problem set 5

Date due March 30, 2016

Explanations are required, no credit for just the answer.

1. Consider the function \(\phi(x) = 0 \) for \(x < 1 \) or \(x > 5 \) and

\[
\phi(x) = \frac{1}{2} - \frac{1}{4}|x - 3|, \quad 1 \leq x \leq 5.
\]

Plot the graph of \(\phi(x) \). Does it represent a valid pdf? If yes, compute the cdf (make sure you give the answer for all \(x, -\infty < x < \infty \)).

2. Let \(f_X(x) = 2x\pi^{-2}, 0 < x < \pi \). Define the RVs \(Y = \sin(X), Z = \sin(X/2) \). Find \(f_Y(y), f_Z(z) \) (you can use the method described on p.202 of the textbook).

3. A snowstorm continues for 1 hour, and the accumulation of snow on the ground in a particular spot is described by an RV \(X \) with pmf \(f_X(x) = 6x(1-x), 0 < x < 1 \) and \(f_X(x) = 0 \) otherwise. What’s the probability that the amount of snow at the end of the storm is within two standard deviations of the mean?

4. Packets arrive at a server one by one with exponentially distributed time between arrivals, \(f_T(t) = \lambda e^{-\lambda t}, t \geq 0 \). (a) What is the probability that there are no arrivals in the next \(t \) minutes? (b) What is the probability that the next packet arrives within \(t \) minutes, \(a \leq t \leq b \), where \(a, b \) are some given numbers?

5. We choose a random point \(X \) in the segment \([0, \pi/4]\). Find \(E(\cos 2X), E(\cos^2(X)) \).

6. A random point \(X \) is chosen from the interval \((0, 1)\). What is the distribution of the RV \(Y = 5X - 1 \)?