1. In a box there are 30 long, 12 medium and 10 short pegs. Four pegs are selected at random and used in 4 different projects (one per project). What is the expected number of projects that receive long pegs?

2. The number of cars passing through a toll gate during any time period of length \(t \) is an RV with the pmf
 \[p_N(n) = a \frac{(2t)^n}{n!}, \quad n = 0, 1, 2, \ldots \]
 Find \(a \) and compute \(P(X < 4) \) and \(P(X > 1) \).

3. Let \(N \) be the random number of failures in a sequence of \(t \) independent Bernoulli experiments with probability of success \(p \). Let \(X \) be the number of successes appearing before the first failure. Find the joint pmf \(p_{N,X}(n,x) \).

4. Suppose that \(X \) and \(Y \) are independent RVs with pmf
 \[p_X(k) = p_Y(k) = p(1-p)^{k-1}, \quad k = 1, 2, \ldots \]
 Find the conditional pmf \(p_{X|A_n}(k|A_n) \), where \(A_n = \{ X + Y = n \} \), \(n = 2, 3, \ldots \).

5. Let \(X \) be an RV such that \(p_X(n) > 0 \) for all \(n \in \mathbb{Z} \). Find \(E[\cos(X\pi)] \), \(E[\sin(X\pi)] \).

6. We are rolling a 6-sided die several times. What is the expected number of rolls before each of the possible outcomes appears at least once?