Problem 1 (10pts) Consider a Markov chain with the transition matrix
\[P = \begin{pmatrix} 1 - 2p & 2p & 0 \\ p & 1 - 2p & p \\ 0 & 2p & 1 - 2p \end{pmatrix}, \quad 0 \leq p \leq 1/2. \]

(a) Classify the states into absorbing, recurrent, transient and identify recurrent classes. Make sure to consider the boundary cases \(p = 0, p = 1/2. \)

(b) Compute the steady-state distribution of the chain. Pay attention to the boundary cases.

(c) Compute the probabilities \(r_{ij}(2) \) of transitioning from \(i \) to \(j \) in 2 steps for all \(i, j = 1, 2, 3. \)

Solution: (a) If \(p = 0 \) then all the states are absorbing, and the chain has 3 “recurrent classes” formed by the states. If \(0 < p \leq 1/2 \), then all the states are recurrent, and the chain has a single non-periodic recurrent class.

(b) If \(p = 0 \), the chain has 3 steady-state distributions depending on the state \(X_0 \), which are \((1, 0, 0), (0, 1, 0), (0, 0, 1). \) If \(0 < p \leq 1/2 \), then \(\pi = \pi P \) gives the equations
\[\begin{align*}
\pi_1 &= \pi_1 (1 - 2p) + \pi_2 p \\
\pi_2 &= \pi_1 \cdot 2p + \pi_2 (1 - 2p) + \pi_3 \cdot 2p \\
\pi_3 &= \pi_2 p + \pi_3 (1 - 2p)
\end{align*} \]
which yield \(\pi_1 = \pi_3 = 1/4, \pi_2 = 1/2. \)

(c) Computing \(P^2 \), we obtain
\[R(2) = \begin{pmatrix} (1 - 2p)^2 + 2p^2 & 4p(1 - 2p) & 2p^2 \\ 2p(1 - 2p) & 4p^2 + (1 - 2p)^2 & 2p(1 - 2p) \\ 2p^2 & 4p(1 - 2p) & 2p^2 + (1 - 2p)^2 \end{pmatrix}. \]

Problem 2 (10pts) The joint density of RVs \(X \) and \(Y \) is as follows:
\[f(x, y) = \begin{cases} e^{-(x+y)} & 0 \leq x < \infty, 0 \leq y < \infty \\ 0 & \text{otherwise} \end{cases} \]
Find the PDF of the random variable \(X/Y. \)
Solution:
Compute the CDF of $Z = X/Y$. For $z > 0$,
\[
F_Z(z) = P\left(\frac{X}{Y} \leq z\right) = \int_{X/Y \leq z} e^{-(x+y)} \, dx \, dy = \\
= \int_{y=0}^{\infty} \int_{x=0}^{zy} e^{-(x+y)} \, dx \, dy \\
= \int_{y=0}^{\infty} (1 - e^{-zy})e^{-y} \, dy \\
= \int_{y=0}^{\infty} (1 - e^{-zy})e^{-y} \, dy \\
= \left\{ \left(-e^{-y} + \frac{e^{-y(z+1)}}{z+1} \right) \right\}_{0}^{\infty} = 1 - \frac{1}{z+1}
\]
Now find
\[
f_{X/Y}(z) = \frac{d}{dz} F_Z(z) = \frac{1}{(z+1)^2}, \quad 0 < z < \infty.
\]

Problem 3 (10 pts) In the tropical forest of Luamo island, thunderstorms occur all year round. They happen at a Poisson rate of 5 per month.

(a) What is the probability that in a given calendar year there are a total of two thunderstorms in January and August combined?

(b) What is the probability that in a given calendar year there are exactly two (not necessarily consecutive) months out of the twelve months that see no thunderstorms at all?

Solution: For the Poisson process, let $P(k, t)$ be the (Poisson) probability of k arrivals in time t. Then
\[
p_0 \triangleq P(0,1) = e^{-5}, \quad p_1 \triangleq P(1,1) = 5e^{-5}, \quad p_2 \triangleq P(2,1) = \frac{25}{2} e^{-5}.
\]

(a) The probability of the event of interest is
\[
2p_0 p_2 + p_1^2 = 50e^{-10} \quad \text{OR:} \quad P(2,2) = e^{-2 \times 5} \left(\frac{2 \times 5}{2!} \right)^2 = 50e^{-10}.
\]

(b) $P(\text{two dry months}) = \binom{12}{2}e^{-10}(1 - e^{-5})^{10}$.

Problem 4 (10 pts)
Two students are to meet in the Student Union. If each of them independently arrives at a time uniformly distributed between 12 noon and 1 pm, find the probability that the first to arrive has to wait longer than 10 minutes.

Solution: Place the origin at 12 noon, and let $X \sim Unif[0,1], Y \sim Unif[0,1]$. The event of interest is that $\{|X - Y| > 1/6\} = \{Y < X - 1/6\} \cup \{Y > X + 1/6\}$. Since $P(\{Y < X - 1/6\})$ is the area of the isosceles right triangle with legs 5/6, i.e., 25/72, the answer is $2 \times 25/72 = 25/36$.

Or, if you missed the geometric view, compute the integrals:
\[
2P[X + 10 < Y] = 2 \int_{x+10<y} f(x,y) \, dx \, dy
\]
\[
\begin{align*}
&= 2 \int \int_{x+y<10} f_X(x)f_Y(y) \, dx \, dy \\
&= \int_{y=10}^{60} \int_{x=0}^{y-10} \frac{1}{60^2} \, dx \, dy \\
&= \frac{2}{(60)^2} \int_{y=10}^{60} (y-10) \, dy = \frac{25}{36}.
\end{align*}
\]

Problem 5 (10pts) The distance between the towns T1 and T2 is 11 miles, and there are 10 mile markers on the road from T1 to T2, with readings 1, 2, \ldots, 10. A marker is chosen randomly with a uniform distribution. Let \(D_1 \) be the distance from T1 to the chosen marker, and let \(D_2 \) be the distance from T2 to that same marker.

(a) Are \(D_1 \) and \(D_2 \) positively or negatively correlated? Justify your answer.

(b) Compute the expected value of \(D_1 \times D_2 \).

Solution:

(a) If \(D_1 \) increases, then \(D_2 \) decreases, so they are negatively correlated. To justify this formally, write

\[
\rho_{D_1,D_2} = \frac{E[(D_1 - ED_1)(D_2 - ED_2)]}{\sigma_{D_1}\sigma_{D_2}},
\]

and notice that if \(ED_1 = ED_2 = 5.5 \), and the quantities \((D_1 - ED_1)\) and \((D_2 - ED_2)\) always have opposite signs. Therefore, \(\rho_{D_1,D_2} < 0 \).

(b) Let \(X \) be a uniform RV with pmf \(p_X(k) = 0.1, k = 1, \ldots, 10 \) and let \(Z = X(11 - X) \). The pmf of \(Z \) is

\[
p_Z(k) = 0.2, \quad k = 10, 18, 24, 28, 30.
\]

Then \(EZ = 0.2 \times 110 = 22 \).

Problem 6 (10pts) Suppose that \(n \) cars passed through a certain intersection within an hour, and \(k \) out of them were passenger cars. The probability that any given car is a passenger car is \(p \) and the type of each car is independent of the other cars. Let \(i \) be a number between 1 and \(n \). What is the probability that the \(i \)th car was a passenger car?

Solution: Let \(B \) be the event that the \(i \)th car is a passenger car and let \(A \) be the event that \(k \) out of \(n \) cars are passenger. Then

\[
P(B|A) = \frac{P(AB)}{P(A)} = \frac{\binom{n-1}{k-1} p^{k-1} (1-p)^{n-k}}{\binom{n}{k} p^k (1-p)^{n-k}} = \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}.
\]

The answer does not depend on \(p \).