Clark School Home UMD
ECE

ENEE411 Advanced Analog and Digital Electronics

Course Description: Examination of analog and digital device models for analysis, design, and simulation of transistor level electronic circuits, emphasizing Metal Oxide Silicon Field Effect Transistors (MOSFETs); fundamental single transistor configurations; frequency response, feedback, and stability of multi-transistor circuits, such as current mirrors, differential amplifiers, voltage references, operational amplifiers and data converters; complementary Metal Oxide Silicon (CMOS) implementations of static and clocked digital as well as mixed signal circuits.

Prerequisite(s): ENEE 303

Corequisite(s): None

Course Objectives:

  • Consolidate and apply key concepts in semiconductor devices, analog circuits and digital circuits, introduced earlier in the electrical and computer engineering curricula
  • Analyze and design complex CMOS integrated circuits including: DC, transient and small signal responses of components such as current mirrors and differential pairs and circuits such as op-amps
  • Optimize complex analog circuits in terms of performance characteristics such as phase margin, gain, and frequency response trade-offs, and optimize digital circuits in terms of fan-out and minimum propagation delay
  • Use circuit simulators to confirm analysis and predict performance
  • Understand how semiconductor physics influences chip design rules and sets limits on integrated circuit performance

Topics Covered:

  • Device models for analog and digital design
  • The inverter and static logic gates
  • Clocked circuits: latches, transmission gates, flip-flops
  • Current mirrors: basic and cascode
  • Amplifiers: fundamental configurations
  • Differential amplifiers: passive and active loads
  • Frequency response
  • Operational amplifiers
  • Feedback
  • Stability compensation
  • Data converters