Clark School Home UMD
ECE

News Story

Sennur Ulukus is PI for NSF grant on secure cognitive radio networks

Sennur Ulukus is PI for NSF grant on secure cognitive radio networks

Professor Sennur Ulukus (ECE/ISR) is the principal investigator for a new National Science Foundation collaborative research grant, “Robust and Secure Cognitive Radio Networks.”

The grant is a special project of NSF’s Computer & Information Science & Engineering directorate, and part of a new US-Finnish collaboration program. Maryland’s portion of the grant is for two years and $160,000. The research is a collaboration among the University of Maryland; Northwestern University; the University of Oulu in Oulu, Finland; and Aalto University in Espoo and Helsinki, Finland.

Cognitive radio is a promising paradigm for dramatically increasing the utilization of wireless spectrum to support the continuing exponential growth in wireless traffic. Research on cognitive networks has mainly focused on sensing of spectrum opportunities and managing radio resources such that the primary users' quality of service is not compromised. Much less attention has been paid to the coexistence of secondary users, which may be associated with different cognitive networks and seek to operate in the same frequency bands. Effective coexistence of such users is essential for the success of future cognitive networks, and is the main objective of this project. In addition, the particularly open nature of cognitive radio raises significant new issues for the security and privacy of the transmitted data, as well as new opportunities for malicious behavior among cognitive or outside entities. The project addresses all of these issues in a holistic framework.

Coexistence requires effective allocation of radio resources in time, frequency, and space among multiple cognitive secondary users, while respecting primary interference constraints. The investigators are developing theoretical bounds for such radio resource management schemes and designing low-overhead distributed algorithms, which account for the incentives of competing secondary service providers as well as the stronger security and privacy measures needed in a cognitive environment. Information-theoretic physical-layer security techniques are being utilized to develop provably secure paradigms for secondary cognitive users and game-theoretic models are being adapted to study the robustness of these networks to various jamming attacks and other malicious behavior.

Related Articles:
Ephremides is PI for NSF grant on energy-efficient cognitive networking
Ulukus to exploit wireless network interference in new NSF grant
Ulukus is PI for NSF grant on energy harvesting wireless communication devices
Five ECE Students Named Future Faculty Fellows
Alumnus Han Granted Tenure at the University of Houston
Ulukus Invited to Lecture at 2012 European School of Information Theory
Six ECE Students Named Future Faculty Fellows
Baras is co-PI on NSF cyber-physical systems award

October 28, 2011


Prev   Next

Current Headlines

Alum Dimitris Tsakaris improves propulsion of robotic octopus

Alum Xiaobo Tan developing robotic fish to 'stalk' real fish in the Great Lakes

Leidos Invests in Innovation Partnership with UMD

Davis, Llorca, and Milner Receive U.S. Patent No. 8,831,524

Brain-behavior initiative workshop draws 160 faculty, deans, adminstrators for wide-ranging discussions

Mayergoyz, Serpico, and Bertotti Publish in Physical Review B

Mayergoyz Invited to Speak at Symposium in France

Ulukus to exploit wireless network interference in new NSF grant

News Resources

Return to Newsroom
Search News
Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk
Faculty Experts