Voice Activity Detection

Jonathan Kola, Dr. Carol Espy-Wilson, Dr. Tarun Pruthi

Introduction

• Voice activity detection is the process by which algorithms called Voice Activity Detectors (VADs) are able to distinguish regions that contain speech from regions that do not contain speech in an audio signal
• Several features distinguish speech from non-speech, however, where the speech signal is corrupted by background noise it becomes more and more difficult to characterize these features and make a decision

Feature Extraction

Commonly used features used to distinguish speech from non-speech are:
• Periodicity
• Fourier Coefficients
• Zero Crossing Rates

Decision Making Process

• After feature extraction, these parameters are fitted into models in order to generate an output decision

A common statistical model setup

\[H_0 : \text{Speech absent: } X = N \]
\[H_1 : \text{Speech present: } X = N + S \]
\[P(X | H_0) = N(\mu_N, \sigma_N) \]
\[P(X | H_1) = N(\mu_{N+S}, \lambda_{N+S}) \]

Where X is the parameter of the feature extracted, N and S are the parameter values in noise and speech respectively, \(\mu_N \) and \(\lambda_{N+S} \) are the mean and variance of the parameter distribution in noise and \(\mu_{N+S} \) and \(\lambda_{N+S} \) are the mean and variance of the parameter distribution in speech + noise.

Output Decision

• A VAD outputs a “1” for every signal frame it decides contains speech, and a “0” for every frame it decides does not contain speech

Experimental Results and Evaluation

The criteria used to evaluate VADs were based on:
• Accuracy in detecting speech (speech hit rate) and accuracy in detecting non-speech (non-speech hit rate) in different noise types at different signal-to-noise ratios (SNRs), on a scale from 0 to 1
• Consistency of performance across different SNRs and noise types
• From this analysis, an algorithm outlined in “VAD based on an Unsupervised Learning Framework”, proposed by D.Ying et al (IEEE Transactions on Audio, Speech and Language Processing, accepted) proved to be the best performer

Ying VAD score in different noises at -12dB, 0dB and 18dB SNR

VAD accuracy at different signal to noise ratios

The distinguishing features of the Ying VAD were:
• Unsupervised noise and speech parameter learning techniques
• Adaptable decision threshold based on a Gaussian Mixture Model
• Scaling of the decision making procedure down to the level of individual frequency bands, which then contribute to determine aggregate results