The Loss Mechanism of Nanoporous Silicon Optical Waveguide for Biochemical Sensors

Susu Yan
Shu Zee Alencious Lo
Professor Thomas E. Murphy
Nanoporous silicon
- Large surface area
- Large range of porosities, and refractive indices

Optical waveguide, Biosensor
- Multilayer structure

Optical loss
- Propagation loss
- Coupling loss
Fabrication Procedure

- **Electrochemical Etching**
 - p-type doped silicon wafer (10^{20}cm^{-3})
 - HF-Water-Ethanol = 1:1:2
 - Different current densities

- High current density \rightarrow High porosity \rightarrow Low refractive index \rightarrow Cladding layer

- Low current density \rightarrow Low porosity \rightarrow High refractive index \rightarrow Core layer
Laser Writing

- 473nm blue laser
- Optimized parameters
 - 30mW laser power
 - 1mm/s speed running X-Y stage
 - 20 μm width waveguide
Fiber coupling measurement
- 1550nm wavelength
- Input power : 0.879mW, Output power : 0.112mW
- Total loss = -8.9dB

Fabry Pérot measurement
- Effective refractive index: 1.552
- Propagation loss: -13dB/cm
- Coupling loss: -2.6dB

Bent waveguides and Mach Zehnder interferometer
Conclusions

- Losses for nanoporous silicon waveguide

 \[
 \text{Total loss} = -8.9\,\text{dB}
 \]

 \[
 \text{Propagation loss} = -13\,\text{dB/cm} \quad (-6.3\,\text{dB})
 \]

 \[
 \text{Coupling loss} = -2.6\,\text{dB}
 \]

- Propagation loss is the main loss.

- Lose analysis of porous silicon waveguide based on Fabry Pérot interferometry measurement was achieved.

- Optimized parameters to obtain low loss nanoporous silicon optical straight waveguide which can be used as biochemical sensors.

- Bent waveguide and Mach Zehnder interferometer was fabricated.
Acknowledgments

- National Science Foundation CISE award #0755224
- MERIT Program
- Professor Thomas Murphy
- Graduate student:
 - Shu Zee Alencious (Alen) Lo
 - Paveen Apiratikul
- Nanocenter and MRSEC at UMD