Timing and Synchronization

Clk
SRC
A Signaling System

1. Transmitter: Encodes data as current/voltage level onto the line
2. Transmission Line: Deliver data from transmitter to receiver
3. Receiver: Compare against reference to extract data
4. Terminator: Remove signal from line, once they’re received
5. Clock: Tells transmitter when to send, receiver when to sample signal

* Poulton ISSCC 1999 Signaling Tutorial
Global Clock I

0: Assume data is stable for setup time before clock edge
1: Rising edge of transmitter clock
2: Transmitter begins to drive data
3: Signal reaches input of receiver.
4: Rising edge of receiver clock
5: Receiver latches data and drives internal signal lines
- “Clock cycle” occurs between steps 1 and 4.
- Assume signal transported cleanly with one way wire delay time between steps 2 and 3.
- If wire delay time exceeds cycle time, multiple bits will be “in flight” simultaneously on the transmission medium.
Global Clock III - Parallel Data

- Skew and jitter eats into timing budget
Basic Problem

- Clock signal is just another signal subject to same constraints of voltage noise, skew and jitter as data signals
Cycle Budget

\[t_{\text{skew}} = \max(\text{skew}) + \max(\text{jitter}) \]
\[t_{\text{tran}} = \text{Edge transition time} = \max(\text{rise_time}, \text{fall_time}) \]
\[t_{\text{eye}} = t_{\text{cycle}} - t_{\text{tran}} - t_{\text{skew}} \]
Skew

- Static timing displacement from ideal design
- Caused by differences in signal path characteristics
- Total timing budget must take data-data skew, data-clock skew as well as clock-clock skew into cycle budget consideration
Jitter

- Dynamic timing displacement from nominal timing characteristics

- Magnitude and offset of timing displacement could depend on: previous signal state(s), current signal state(s), supply voltage level(s), crosstalk, variations in thermal characteristics. Perhaps even phases of the moon (not proven).
Clock Tree I

- Large synchronous systems require all chips to be driven by clock signal.
- Clock signal paths and buffer chips could introduce both skew and jitter at each stage
- Jitter and skew are additive with larger systems. More buffering, more skew and jitter.

buffer chips could have +/- xx% tolerance
Clock Tree II

An on chip clock tree
Clock Forwarding

- Reference clock experiences same electrical loading condition and signal discontinuity characteristics as data signals.
- clock skew with respect to data signal may be minimized but jitter remains.
- Also known as source synchronous clocking
Dual Edge Clocking

- Only one edge of clock latches data
- Duty cycle of clock signal is not relevant
- Clock signal operating at 2X switching rate of data

- Both edges of clock used to latch in data
- Duty cycle of clock signal must be even
- Clock signal must be phase shifted by 90 degrees relative to phase of data signal
- How do you get 90 degrees?
Phase Locked Loop

- Given a data signal, recover the frequency and phase of the data signal, generate local reference clock ϕ_{out}

- Local reference clock may be frequency multiple of input clock

- PLL depends on data input to provide “enough” signal transitions to lock onto, else PLL could lose coherency.

- Modern processors utilize PLL’s for frequency multiplication
Voltage Controlled Oscillator

- VCO may be designed from ring oscillator where voltage controls the number of (odd) stages of inverters in the feedback ring

- VCO may be designed from resonant oscillator where voltage controls capacitance in LC circuit.
Delay Locked Loop

- Given a data signal and reference clock, compare and adjust phase of local clock signal by $\Delta \phi$
- Unlike PLL, requires reference clock
- Hence, no need to "recover" clock signal with VCO
- Modern DRAM with dual edged clocking utilizes DLL's for phase compensation. (gets you 90 degrees)
- Step 1 to step 2 is the transmitter delay from clock edge to output of data onto signal wire.
- Data slightly skewed (delayed) with respect to clock edge. Deskew with DLL to recover lost phase.
- reference clock has same phase (zero skew) with respect to data output. (DDR SDRAM DQS signal)