Logic (1)

1. K says S

\[(A \text{ and } B) \text{ says } S \equiv (A \text{ says } S) \text{ and } (B \text{ says } S)\]

if \(A = B\), then \((A \text{ says } S) \equiv (B \text{ says } S)\)

Example of use:
- signatures \(<S, \{S\}^K>\)
- request transmission on a channel: C says RQ

2. \(A \Rightarrow B\) \((A \text{ speaks for } B)\)

\[(A \Rightarrow B) \equiv (A = A \text{ and } B)\]

if \(A \Rightarrow B\) and \((A \text{ says } S)\), then \((B \text{ says } S)\)

\(\Rightarrow\) is a partial order (i.e., is reflexive, antisymmetric, transitive)

Example of use:
- unsigned certificates: \(<A, K> \equiv K\) is A’s public key
- group membership: \(A \Rightarrow G \equiv A\) is a member of G
 o groups cannot speak; they have neither channels nor keys
Logic (2)

3. $B \mid A$
 (B quoting A)

 $(B \mid A \text{ says } S) \equiv (B \text{ says } A \text{ says } S)$

 Example of use:
 - $K_b \mid K_a \text{ says } S \equiv \{S\}^{K_a} \rightarrow S \rightarrow \{S\}^{K_b}$
 S went through a relay

4. B for A

 if B for A, then $(B \text{ says } A \text{ says } S)$ and A delegated to B

 A says $((B \mid A) \Rightarrow (B \text{ for } A))$

 Note: $(B \text{ for } A)$ is stronger than $(B \mid A)$

 Example of use:
 - delegation certificates; e.g., login certificates
Logic (3)

5. A as R (A in role R)

if (A as R) says S, then (A says R says S)

A as R = A | R only if R = role
A => A as R only if R = role (A =/=> A | R for any R)

Example of use:
- booting certificates
- restricting user privileges

6. Delegation Axiom

if A says ((B | A) => (B for A)), then ((B | A) => (B for A))

Note: This axiom does not require B to accept delegation; i.e.,

(B | A) says ((B | A) => (B for A))
Logic (4)

7. Hand-off Axiom

if (A says (B => A)), then B => A

8. Inter-realm Certificate Validation Axioms

(1) P except M => P
(2) if M=/= N, then ((P except M) | N) => P / N except “..”
(3) if M=/= “..”, then (P / N except M | “..”) => P except N

9. Theorems

(1) Monotonicity of and, |, for, and as w.r.t. =>

if A =>B then (A and C => B and C)
A | C => B | C
A for C => B for C
A as C => B as C
Logic (5)

(1) Monotonicity of and, |, for, and as w.r.t. =>
 if (A => B and C => C’) then (A and C => B and C’)
 A | C => B | C’
 A for C => B for C’
 A as C => B as C’

(2) Transitivity of =>
 if A => B and B => C, then A => C

(3) Hand-off Rule
 if (A’ => A) and A’ says (B => A ’), then B => A

(4) Joint Authority Rule (Revocation; Limited-Time Login)
 if ((A' and B) => A) and (B => A’), then B => A
RQ Authentication: Was RQ received on Channel Cbob issued by Bob after login to workstation WS (which was obtained by booting OS on VAX) ?

RQ Authentication: File Server wants to establish \((VAX \text{ as } OS) \) for Bob says RQ
File Server wants to establish *(VAX as OS)* for Bob says RQ

File Server needs:
(1) axioms and theorems of the logic
(2) certificates it receives or has
(3) trust relationships established

Certificates:

(1) booting : \((K_{vax \ as \ OS} \ says \ (K_{ws} => K_{vax \ as \ OS}) \)
(2) login: \(K_{Bob} \ says \ (K_{ws | K_{Bob}} => (K_{ws \ for \ K_{Bob}}) \)
(3) channel: \((K_{ws | K_{Bob}} \ says \ (C_{Bob} => (K_{ws \ for \ K_{Bob}})) \)
 (authority hand-off)
(4) VAX: \(K_{ca} \ says \ K_{vax} => VAX \)
(5) Bob: \(K_{ca} \ says \ K_{Bob} => Bob \)

Trust Relationship

any principal trusts: \(K_{ca} => \) principal
File Server’s Logic (1)

by Delegation axiom (applied to login certificate)
(1) \((K_{ws} \mid K_{Bob}) \Rightarrow (K_{ws} \text{ for } K_{Bob})\)

by \(\Rightarrow\) (applied to channel certificate \((K_{ws} \mid K_{Bob})\text{ says } (C_{Bob} \Rightarrow (K_{ws} \text{ for } K_{Bob}))\) and (1))
(2) \((K_{ws} \text{ for } K_{Bob})\text{ says } (C_{Bob} \Rightarrow (K_{ws} \text{ for } K_{Bob}))\)

by Hand-off axiom (applied to (2))
(3) \(C_{Bob} \Rightarrow (K_{ws} \text{ for } K_{Bob})\)

by \(\Rightarrow\) (applied to incoming request, namely, \(C_{Bob}\text{ says } RQ\) and (3))
(4) \((K_{ws} \text{ for } K_{Bob})\text{ says } RQ\)

by Hand-off axiom (applied to booting certificate)
(5) \(K_{ws} \Rightarrow (K_{vax} \text{ as OS})\)
File Server’s Logic (2)

by monotonicity of for (applied to (5))

(6) K_{ws} for $K_{Bob} => (K_{vax} \text{ as OS })$ for K_{Bob}

by => (applied to (4) and (6))

(7) $((K_{vax} \text{ as OS })$ for $K_{Bob})$ says RQ

by trust (to Bob and VAX)

(8) $K_{ca} => VAX$
(9) $K_{ca} => Bob$

by monotonicity of as (to (10))

(12) $(K_{vax} \text{ as OS }) => VAX \text{ as OS}$

by monotonicity of for (to (11) and (12))

(13) $(K_{vax} \text{ as OS })$ for $K_{Bob} => (VAX \text{ as OS })$ for Bob

by => (to (7) and (13))

$(VAX \text{ as OS})$ for Bob says RQ
Performing Access Control

certificates; request \(RQ = (K_{Bob} \text{ says (Read “Foo”)}) \)

Channel
Cbob

FileServer

file system

Foo’s ACL

File Foo

FMV Read

RQ Access Control: Is Bob allowed Read access to File “Foo”?
RQ Access Control: File Server wants to establish that Bob’s \(RQ = FMV \text{ says (Read “Foo”)} \) and that FMV is authorized to Read “Foo” by searching Foo’s ACL
Additional Certificates:
(6) Group: K_{ca} says Bob \Rightarrow FMV

by trust,
(14) $K_{ca} \Rightarrow$ FMV

by \Rightarrow (applied to Group certificate (6) and (14))
(15) FMV says Bob \Rightarrow FMV

by Hand-off Axiom (applied to (15))
(16) Bob \Rightarrow FMV

by \Rightarrow (applied to (11) and request $RQ = (K_{Bob}$ says (Read “Foo”)))
(17) Bob says (Read “Foo”)

by \Rightarrow (applied to (16) and (17)
FMV says (Read “Foo”))
Validation of Interrealm Certificates (in DSSA)
B wants to establish $K_F \Rightarrow /D/F$ except ".."

$P =$ any pathname (sequence of simple names); $M, N =$ any simple names
P except $N =$ principal that speaks for any pathname that is a suffix of P,
if the first simple name after P is not N, or
principal that speaks for any pathname that is a prefix of P,
if the first simple name after P is not ".."
B wants to establish $K_F \Rightarrow /D/F$ except “..”

B needs to use:
(1) available certificates
(2) trust relationships
(3) axioms and theorems

Certificates:

$K_B | '..' \text{ says } [K_C \Rightarrow (/C \text{ except } B)]$

$K_C | '..' \text{ says } [K_{\text{root}} \Rightarrow (/ \text{ except } C)]$

$K_{\text{root}} | D \text{ says } [K_D \Rightarrow (/D \text{ except } '..')]$

$K_D | F \text{ says } [K_F \Rightarrow (/D/F \text{ except } '..')]$

Trust Relationships
everyone trusts its key; e.g., B trusts $(K_B \Rightarrow /C/B \text{ except nil})$
B’s Logic (1)

by trust
(1) B trusts $K_B \Rightarrow /C/B$ except nil

by interrealm Axiom (3) (applied to B)
(2) \(((/C/B$ except nil$) \mid \text{‘..’}) \Rightarrow (/C$ except B$)

by monotonicity of \mid w.r.t \Rightarrow (applied to 1)
(3) $K_B \mid\text{‘..’} \Rightarrow ((/C/B$ except nil$) \mid \text{‘..’})$

by transitivity of \Rightarrow
(4) $K_B \mid\text{‘..’} \Rightarrow /C/B$ except B

by using certificate
$K_B \mid\text{‘..’}$ says $[K_C \Rightarrow (/C$ except B$)]$ and the Hand-off Theorem

(5) $K_C \Rightarrow /C$ except B
B’s Logic (2)

(5) \(K_C \Rightarrow /C \text{ except } B \)

by interrealm Axiom (3) (applied to C)

(6) \(((/C \text{ except } B) \mid '..') \Rightarrow (/\text{ except } C) \)

by monotonicity of \(|\text{ w.r.t } \Rightarrow (\text{applied to } 6)\)

(7) \(K_C \mid '..' \Rightarrow ((/C \text{ except } B) \mid '..') \)

by transitivity of \(\Rightarrow\)

(8) \(K_C \mid '..' \Rightarrow /\text{ except } C \)

by using certificate

\(K_C \mid '..' \text{ says } [K_{\text{root}} \Rightarrow (/\text{ except C})] \) and the Handoff Theorem

(9) \(K_{\text{root}} \Rightarrow /\text{ except } C \)
B’s Logic (3)

(10) \[K_{\text{root}} \Rightarrow / \text{except } C \]

by interrealm Axiom (2) (applied to root)

(11) \[((/ \text{except } C) | D) \Rightarrow (/D \text{except ‘..’})\]

by monotonicity of | w.r.t \Rightarrow (applied to 10)

(12) \[K_{\text{root}} | D \Rightarrow ((/ \text{except } C) | D) \]

by transitivity of \Rightarrow

(13) \[K_{\text{root}} | D \Rightarrow /D \text{except ‘..’} \]

by using certificate

\[K_{\text{root}} | D \text{ says } [K_D \Rightarrow (/D \text{except ‘..’})] \text{ and the Handoff Theorem} \]

(14) \[K_D \Rightarrow /D \text{except ‘..’} \]
B’s Logic (4)

(15) \(K_D \rightarrow \langle /D \text{ except ‘..’} \rangle \)

by interrealm Axiom (2) (applied to D)

(16) \(((D/ \text{ except ‘..’}) \mid F) \rightarrow (\langle /D/F \text{ except ‘..’} \rangle) \)

by monotonicity of | w.r.t \(\rightarrow \) (applied to 15)

(17) \(K_D \mid F \rightarrow (\langle /D \text{ except ‘..’} \rangle) \mid F) \)

by transitivity of \(\rightarrow \)

(19) \(K_D \mid F \rightarrow \langle /D/F \text{ except ‘..’} \rangle \)

by using certificate

\(K_D \mid F \text{ says } [K_F \rightarrow (\langle /D/F \text{ except ‘..’} \rangle)] \) and the Handoff Theorem

(19) \(K_F \rightarrow \langle /D/F \text{ except ‘..’} \rangle \)
B wants to establish $K_F \Rightarrow /D/F$ except “..”

Least Common Ancestor $(B, F) = \text{Link} (C, D)$
(in general, link \Rightarrow lca is no longer unique)