Domain Name
Security Extensions

Eastlake and Kaufman
November 1996
Domain Name System Security Extensions

• The DNS:
 • lacks mechanisms to ensure data integrity and authentication
 • doesn’t care about secrecy

• Goals of the security extensions => provide for:
 • data integrity and response authentication through use of digital signatures
 • query authentication (optional)
 • security even through non-security-aware servers
 • provide for storage of authenticated public keys in the DNS
Possible attacks: spoofing

- Can lead to:
 - denial of service => intruder claims QNAMEs are inexistent
 - solution: NXT RR to authenticate the nonexistence of names or types for existing names.
 - masquerade => intruder indicates his host’s address in responses.
 - solution: SIG RR to authenticate resource records.
Possible attacks

- **Solution**: digital signatures to authenticate master files.
Possible attacks

• **Scenario**: A NS wants to restrict service (i.e., recursive), only to a specific set of resolvers.
• **Problem**: access control list not provided.

• **Scenario**: An organization wants to maintain the privacy of some names and RRs in its zone.
• **Problem**: anybody can claim to be a secondary NS for that zone and ask for a zone transfer.

• **Solution**: add access control and digital signatures to authenticate transactions and requests (not only RR signatures and reply authentication).
Certificate-like structure in DNS

<table>
<thead>
<tr>
<th>X.509</th>
<th>DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>owner</td>
</tr>
<tr>
<td>serial number</td>
<td>labels</td>
</tr>
<tr>
<td>algorithm used for signing</td>
<td>algorithm used for signing</td>
</tr>
<tr>
<td>issuer</td>
<td>signer’s name</td>
</tr>
<tr>
<td>validity</td>
<td>signature expiration time</td>
</tr>
<tr>
<td>subject</td>
<td>type covered</td>
</tr>
<tr>
<td>subject-public-key-info</td>
<td>key footprint</td>
</tr>
<tr>
<td>identifiers</td>
<td>time signed</td>
</tr>
<tr>
<td>signature</td>
<td>signature</td>
</tr>
</tbody>
</table>
Recursive Trust Hierarchy Traversal in DNS

Scenario:
A query made by a host in the domain H for a host in domain C.
Iterative Trust Hierarchy Traversal in DNS

Scenario:
A query made by a host in the domain H for a host in domain C.
Presentation Overview

- **Section 1**: overview of the extensions, key distribution and data origin authentication.
- **Section 2**: the KEY (public key) resource record, its structure and use.
- **Section 3**: the SIG (digital signature) resource record, its structure, use and representation.
- **Section 4**: the NXT resource record (permits authenticated denial of existence of a name or type in the DNS).
- **Section 5**: resolver configuration with starting key(s) for secure resolving of DNS requests.
- **Section 6**: review of operational considerations: key generation, lifetime, and storage.
- **Section 7**: levels of conformance for resolvers and servers.
Section 1: Overview of DNS security extensions

- Services provided:
 - key distribution
 - data origin authentication
 - transaction and request authentication

- Services not provided:
 - access control lists or other means to differentiate inquires
 - confidentiality for queries or responses
Section 1 (continued)

• **Key distribution** :
 - a new KEY RR type defined to hold public keys
 - keys associated with domain names
 - security aware NSs automatically return KEY RRs as additional information, along with the RRs actually requested.

• **Data origin authentication and integrity** :
 - a new SIG RRs type defined to hold digital signatures
 - a single private key that signs for an entire zone
 - the zone private key kept off-line, periodically signs RRs in the zone
 - data origin authentication belongs to a zone not an NS => compromise of a server will not necessarily affect the entire zone
 - resolvers can learn the public keys of zones :
 - by reading it from a DNS
 - by having it statically configured
Section 1 : special considerations

• **TTL** :
 • TTL ticks down when RRs are cached => TTL left out of the signature.
 • an original TTL is included in the signature; it is included in the RR along with current TTL
 • signatures include also a time signed and expiration time

• **Delegation Points** :
 • leaf nodes of a zone (delegation points to a subzone) => viewed as belonging to subzone
 • occur in two master files signed by zone’s and subzone’s keys
 • KEY RR of the subzone appears in the zone’s master file, signed by zone’s key
 • NSs and A(glue) RRs for subzone are signed by subzone’s key

• **CNAME RRs** :
 • KEY, SIG, and NXT RRs allowed along with CNAME RR
 • suppress CNAME processing for the above types as done on CNAME retrieval
 • automatically return SIG RRs authenticating CNAME RRs

• **DNS Transaction and Request Authentication** :
 • the private key used belongs to the host initiating the transaction/request, not to a zone.
Section 2 : KEY RR

- Used to document a public key associated with a domain name
- Signed by a digital signatures for authentication
- Associated with:
 - a zone
 - a host or other entity
 - an user account
- Format:

```
<table>
<thead>
<tr>
<th>flags</th>
<th>protocol</th>
<th>algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
public key
```
Section 2 : KEY RR’s Fields

• Flags :
 • bits 0, 1 : type field => key used for authentication, confidentiality or not used
 • bit 2 : experimental
 • bits 3, 4 : must be zero
 • bit 5 : indicates that the key is associated with an user or account at an end entity (host)
 • bit 6 : indicates that key is associated with a non-zone entity (usually a host)
 • bit 7 : indicates that key is associated with a zone
 • bit 8 : reserved
 • bit 9 : “e-mail” bit => key used with MIME security multiparts
 • bits 10, 11 : reserved, must be zero
 • bits 11-15 : indicates whether key can sign RRs

• Protocol :
 • indicates in conjunction with which protocol the key is used

• Algorithm :
 • a value of 1 => MD5/RSA algorithm
 • values from 2 through 252 available for assignment to other algorithms
Section 3 : SIG RR

• Authenticates RRs of a particular type, class and name

• Binds the signature to a time interval and the signer’s name

• RDATA format:

<table>
<thead>
<tr>
<th>0</th>
<th>15</th>
<th>16</th>
<th>23</th>
<th>24</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>type covered</td>
<td>algorithm</td>
<td>labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>original TTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>signature expiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>time signed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>key footprint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>signer’s name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>signature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

• labels: count of how many labels there are in the SIG RR owner name excluding “*”.
• key footprint:
 • used to select among multiple keys types for same algorithm (e.g., sig vs. auth keys)
 • its exact meaning is algorithm dependent
Section 3 : canonical form and order for RRs

• Canonical form and order needed because :
 • RRs’ owner names are stored in upper and lower case
 • RRs’ order is not preserved in master files
 • a SIG RR may sign one or more RRs => they need to be ordered and in canonical
 form

• Canonical form for RRs :
 • converted to lower case
 • owner names expanded (not compressed with DNS compression)
 • the original TTL substituted by the current TTL

• Canonical order for RRs :
 • labels are ordered as left justified unsigned octets
 • a missing octet sorts before a zero octet
 • names are sorted by starting with the highest level (nearest to the root) label down
 to the leafs
 • within a particular name, types are sorted similarly to labels
 • SIG RRs signing a type are placed immediately after all the RRs of that type
Section 3: Other SIG RRs

• Zone transfer (AXFR) SIG:
 • used to authenticate zone transfers
 • created by signing an entire zone

• Transaction and Request SIG:
 • appended to the end of a response or query, to authenticate the transaction
 • signed by the host’s key not by the zone’s key

NOTE:
Security aware NSs should attempt to send SIG RRs which authenticate the RRs requested, along with those RRs
Section 4 : Non-existent name and type authentication

• The extensions provided so far authenticate only existing names/types.

• NXT RR => authenticates the non-existence of names or types
 • in a master file all RRs are ordered in canonical order
 • for a name interval in which no name exists a NXT RR is created
 • the owner is the name with which the interval begins
 • the RDATA of NXT RR contains:
 • all existent types for the owner of the NXT RR
 • the name where the name interval ends

• NXT RRs authenticate:
 • the non-existence of a type at an existing name => the NXT RR at that name lists all existing types for that name
 • the non-existence of a name => the NXT RR for an interval containing that name

• NXT RR that authenticates a name is the last one in a zone:
 • name space is considered circular => starts and ends with the zone’s name
 • the last NXT RR => the owner is the last name, in the RDATA we have the zone’s name
Section 5 : Initial Resolver Configuration

• Resolvers need to be configured with trusted public keys of one or more zones

• Resolver can then learn the public keys of other zones, through glue records

• Greater security is obtained if resolvers configured with keys for all critical zones

• Secure NSs classify data in four classes :
 • authenticated => signatures verified
 • pending => at least one signature the NS tries to verify
 • insecure => data obtained through a non-secure zone
 • bad => signature verification failed

• Two new header bits are used :
 • AD in responses => when set, data was verified by NS that sent it
 • CD in queries => when set, unverified data is acceptable (reduces NS response latency)

• Chaining through zones :
 • security aware NSs should not step from a secure zone to a non-secure one, unless the non-secure zone is certified to be non-secure(through a KEY RR)
 • no zones can be trusted if they can be reached only via non-secure zones.
Section 6 : Operational Considerations

• **Key size:**
 - recommended minimum 640 to 1000 bits

• **Key storage:**
 - zone private keys and zone file master copy to be kept and used off-line.
 - RRs and zones to be authenticated/signed periodically, off-line
 - only one-way information flow from signer machine to the rest of the network

• **Key generation:**
 - recommended to happen of-line

• **Key lifetimes:**
 - zone keys => less than 4 years; recommended 13 month
 - on-line user/entity keys => less than 36 days

• **Signature lifetimes:**
 - small multiple of the TTL
Section 7 : Conformance

1. Server conformance :
 • minimal :
 - ability to store and retrieve KEY, SIG and NXT resource records
 • full :
 - ability to read SIG, KEY and NXT RRs in zone files
 - ability to add appropriate SIG and NXT RRs as needed
 - automatic inclusion of SIG, KEY and NXT RRs in responses
 - recognize the CD and use of the AD bit headers as necessary
 - proper handling of NXT RRs at delegation points

2. Resolver conformance :
 • minimal :
 - ability to handle KEY, SIG and NXT RRs when explicitly requested
 • full :
 - understand KEY, SIG and NXT resource records
 - maintain proper information in its caches about which RRs have been authenticated
 - perform additional queries as necessary to obtain KEY, SIG and NXT RRs
 - set the CD query bit header in its requests (usually)