Review of Last Class

- Discussions on free-lunch issues of data hiding
- Fine granularity scalable coding
 - Drift
 - Bit-plane coding

Today
- FGS performance and discussions
- Wavelet coding for achieving scalability

FGS Tool: Bit-plane Coding (clarifications)

- Bit-plane coding for successive approximation
 - Binary representation: i-th bit determines whether to add $L/2^i$

- Optimal reconstruction value with an i-bit representation
 - Recall MMSE quantizer

$$
\begin{array}{c}
1 \times L/2 \\
0 \times L/4 \\
1 \times L/8 \\
1 \times L/16
\end{array}
$$
Example: Bit-Plane Coding

- Bit-plane coding into (Run, EOP) symbol
 - Run ~ # of zeros before a “1”
 - EOP flag ~ end-of-plane
 - Encode sign right after the VLC code of (Run, EOP) symbol containing MSB of the associated non-zero coeff. value

Example:

```
20,6,0,9,3,0,2,0,0,0,1,0,...,0 (absolute)
0,1,1,1,1,1,1,0,0,0,1,1,0,0,0,1,0,0,0,1,0 (sign bits)
```

Therefore, the 4 bit-planes are considered in forming the (RUN, EOP) symbol. Writing every value in the binary format, the 4 bit-planes are formed as follows:

- Run: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (MSB)
- Run: 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0 (MSB-1)
- Run: 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (MSB-2)
- Run: 0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0 (MSB-3)

Converting the four bit-planes into (RUN, EOP) symbols, we have:

- (0,1) (MSB)
- (0,1) (MSB-1)
- (0,1) (MSB-2)
- (0,1) (MSB-3)

Run-level vs. Bit-Plane Coding

- [(Run, Level), value] coding
 - Used in traditional DCT coding (following quantiz. and zig-zag scan)
 - “run” # of zeros before nonzero coeff., “level” (range of coeff. mag.)
 - (Run, Level) statistics depends on quantization step size
 - Large Q lead to more symbols of long run and small level
 - Hard to design one VLC table suits all Q

- Bit-plane coding
 - (Run, EOP) statistics are quite independent of quantization step size
 - Use different VLC table for different bit-planes
 - More efficient than run-level coding
 - Up to 20% coding gain esp. for small quantization step size

Coding Gain of Bit-plane Coding over Run-level

Diagram is from W.Li's CSVT 3:01 paper Fig.6(a)

FGS's Performance via Bit-plane Coding of DCT

- Adopted by Streaming Video Profile (in MPEG-4 Amendment)
 - Encode base layer using non-scalable coding
 - Enhancement layer encodes difference between original & reconstructed picture
 - Uses bit-plane coding on DCT coeff. of the difference

- FGS vs. multi-layer SNR scalability
 - FGS is about 2dB better due to coding gain of bitplane over run-level

- FGS vs. best non-scalable coding
 - FGS is about 2dB worse (nonscalable serves as performance bound of FGS)
 - Ref. for motion prediction is base-layer rather than the high-quality picture

- FGS vs. simulcast (several non-scalable streams at different rate)
 - FGS (smooth quality changes) vs. simulcast (abrupt step change)

Results: W.Li’s Sec.V Fig.19-21
Discussions on F.G.S.

- If always using base-layer as motion prediction reference for all enhancement layers
 - Less error propagation, easier error recovery (just need correct base layer)
 - Residue would be larger than using reconstruction from high quality layers as reference so coding efficiency is reduced

- Solutions to coding efficiency problem ~ Progressive F.G.S.
 - With careful assignment of reference layers for prediction
 - Periodically use intermediate enhancement layers as MC reference
 [Ref.] Feng Wu et al. Trans. CSVT 3/2001 pp332-344

- Wavelet coding: An alternative way to DCT-bitplane F.G.S.
 - Inherent multiresolution structure
 - Bit-plane coding such as in Embedded Zero Tree (EZW)
Scalability via Wavelet-based Coding

Wavelet Transform for Image Compression

- **Today’s emphasis**
 - Conceptual aspects related to image compression
 - Wavelet is also useful for denoising, enhancement, and image analysis
 - For more info. on wavelet: ENEE624, wavelet math course, & other ref.

- **K-level 1-D wavelet decomposition**
 - Successive lowpass/highpass filtering and downsampling
 - on different level: capture transitions of different frequency bands
 - on the same level: capture transitions at different locations

Examples of 1-D Wavelet Transform

Multi-resolution Analysis by 2-D Wavelet Transf.

- Easy to achieve scalability: spatial-frequency, SNR
Subband Coding Techniques

- General coding approach
 - Allocate different bits for coeff. in different frequency bands
 - Encode different bands separately
 - Example: DCT-based JPEG and early wavelet coding

- Minor difference between subband coding and early wavelet coding
 - Choices of filters
 - Subband filters aim at (approx.) non-overlapping freq. response
 - Wavelet filters typically designed for certain smoothness constraints

- Shortcomings of subband coding
 - Difficult to determine optimal bit allocation for low bit rate applications
 - Not easy to accommodate different bit rates with a single code stream
 - Difficult to encode at an exact target rate

Embedded Zero-Tree Wavelet Coding (EZW)

- “Modern” lossy wavelet coding exploits multi-resolution and self-similar nature of wavelet decomposition
 - Energy is compacted into a small number of coeff.
 - Significant coeff. tend to cluster at the same spatial location in each freq. subband

Two Key Concepts of EZW

- Significance map coding via zero-Tree
 - If encode only high-energy coefficients
 - Need to send location info. ➔ large overhead
 - Encode “insignificance map” using zero-trees
 - Symbols of zero-tree root and isolated zeros

- Successive approximation on signif. coefficients
 - Similar to bit-plane coding discussed earlier
 - Send most-significant-bits first and gradually refine coeff. value
 - “Embedded” nature of coded bit-stream
 - get higher fidelity image by adding extra refining bits ➔ fine granular scalability

- Also, DC band is differentially coded

Wavelet-based Video Coding

- Three main categories
 - Spatial domain motion compensation ➔ 2-D DWT on MC residue
 - 2-D DWT ➔ freq.-domain motion compensation
 - 3-D DWT and coding (with and without motion compensation)

- Wavelet video coding vs. widely used DCT-hybrid coding
 - Insignificant benefits of Wavelet approach for videos except scalability

- Claimed 3dB gain of Wavelet coding over DCT for images
 - Comparison w.r.t JPEG Baseline: DCT coder can be further improved
 - Wavelet advantage is not all due to transforms
 - Main contribution from better rate allocation, advanced entropy coding, & smarter redundancy reduction via zero-tree

Summary

- Fine granularity scalable coding (cont’d)
 - Performance
 - Discussions

- Wavelet coding for achieving scalability
 - Multi-resolution nature of wavelet transform
 - FGS through coeff. tree structure and bit-plane coding

- Next Time:
 - Other coding problems related to layered coding

Suggested Reading

- Related tech. publications on F.G.S.
 - Tutorials/surveys in IEEE CSVT 3/01 special issue on streaming video
 - W.Li’s survey on MPEG-4 FGS (DCT bitplane)
 - F.Wu et al.’s progressive FGS

- Wavelet-based image coding
 - Sec.11.3 of Wang’s video textbook
 - Usevitch’s tutorial in IEEE Sig. Proc. Magazine 9/01

Questions for Today

- Transmit an image (say, Lena) using two channels
 - Data sent over each channel may get lost
 - Conditions of two channels are independent
 - Prob. that both channels are bad at the same time is very small

 [Codec Design Goal]
 - Fix the total # of bits to be sent over the two channels
 - When only one channel is good, want to get image decoded with reasonable perceptual quality
 - When both ch. are good, want to get image decoded with improved quality

 [Bonus] design and implement a proof-of-concept test of the best approach you can think of