Lecture 10

Nonlinear System and Feedback

Consider the system

$$\dot{x} = f(x, u)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$. Suppose $f(0, 0) = 0$ and $f \in C^1$. Let

$$A = \left(\frac{\partial f}{\partial x} \right)_{(0, 0)}$$

and let

$$B = \left(\frac{\partial f}{\partial u} \right)_{(0, 0)}$$

Hypothesis 1

Let K be such that

$$\text{spectrum } (A + BK) \subseteq \mathbb{C}$$

Consider the closed loop system

$$\dot{x} = f(x, u)$$

$$u = Kx .$$

Thus

$$\dot{x} = \tilde{f}(x) = f(x, Kx) .$$

Clearly $\tilde{f}(0) = 0$. The linearization of the closed loop system at the origin is

$$\tilde{z} = \tilde{A} \tilde{z} ,$$

where

$$\tilde{A} = \left(\frac{\partial \tilde{f}}{\partial x} \right) .$$
But \(\left(\frac{\partial f}{\partial x} \right) \bigg|_{x=0} = \left. \frac{\partial f}{\partial x}(x, kx) \right|_{x=0} \)

\[= \left. \frac{\partial f}{\partial x} \right|_{x=0} + \left. D_x f \cdot k \right|_{x=0} \quad \text{(chain rule)} \]

\[= (A + BK). \]

By hypothesis 1, and the indirect method of Lyapunov, the origin is an asymptotically stable equilibrium of the closed-loop system.

Remark: A sufficient condition for hypothesis 1 to hold is that the pair \([A, B]\) is controllable. \(<\text{Recall: the eigenvalue/pole placement theorem}>\)

We see that \(u = Kx \) a linear feedback law, can be stabilizing. The region of attraction may be estimated by

(i) solving \((A + BK)^T P + P (A + BK) = -Q\) for a \(Q = Q^T > 0 \)

(ii) let \(g(x) = f(x, kx) - (A + BK)x \)
and observe that $||g(x)|| \leq 5 \times 10^{-12}$ and $||x||$ can be made arbitrarily small by choosing r small.

This is the argument discussed in pages 4 & 5 of Lecture Note 6 (point iii).

By (d), $y_{(0)}$ may be too close for practical purposes. The approach here is to stabilize the system to exactly linearize ϵ. Any equilibria do not have the existence of an additional linear feedback. Thus, the system is destabilized.
Definition

Let \(y = f(y) + G(y)u \) where
\[
\begin{align*}
 f(0) &= 0, \\
 G(y) &= \begin{bmatrix} g_1(y) & \ldots & g_m(y) \end{bmatrix} \\
 g_i(0) &= 0.
\end{align*}
\]

We say that this system is \underline{exact state feedback linearizable} if there exists an open \(\mathbb{R}^n \rightarrow \mathbb{R}^n \) map \(T : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n \) of \(U \), \(T \) is \(C^\infty \) and invertible, \(T^{-1} \) exists and is \(C^\infty \), and functions \(\alpha(x) \) and \(\beta(x) \) such that under the change of coordinates by \(T \),

\[
x = T(y)
\]

satisfies
\[
\dot{x} = Ax + B \beta^{-1}(x) [u - \alpha(x)]
\]

\(\equiv Ax + Bv \)

where \(v \equiv \beta^{-1}(x) \cdot [u - \alpha(x)] \)

and \([A, B] \) is controllable.

We then seek \(\beta(x) \) such that \(\beta(T(y)) \) is an invertible \(m \times m \) matrix at every \(y \).
The system outside the dotted line is linear.

By chain rule

\[
\dot{x} = \frac{\partial T}{\partial y} \dot{y}
\]

\[
= \frac{\partial T}{\partial y} \left(f(y) + g(y) u \right)
\]

\[
= A \dot{x} + B \beta^{-1}(x) \left[u - \alpha(x) \right]
\]

\[
= AT(y) + B \beta^{-1}(T(y)) \left[u - \alpha(T(y)) \right]
\]

\[y \in U. \]

Set \(u \equiv 0 \)

\[
\Rightarrow \begin{cases}
\frac{\partial T}{\partial y} f(y) = AT(y) - B [F(T(y))]^{-1} \alpha(T(y)) \\
\frac{\partial T}{\partial y} g(y) = B [F(T(y))]^{-1}
\end{cases}
\]
Consider the single input case \((m = 1)\) with canonical form \(A = A_c, \quad B = B_c \) and \(G_c = g \)

\[
A_c = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}, \quad B_c = \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
1
\end{bmatrix}
\]

Then the conditions above on \(T \) take the form

\[\begin{align*}
(1a) \quad & \frac{d}{dy} T_1 \cdot f(y) = T_2 \cdot g(y) \\
(2a) \quad & \frac{d}{dy} T_2 \cdot f(y) = T_3 \cdot g(y) \\
& \vdots \\
(h-1)a \quad & \frac{d}{dy} T_{h-1} \cdot f(y) = T_h \cdot g(y) \\
(ha) \quad & \frac{d}{dy} T_h \cdot f(y) = -\frac{d'}{\beta} \cdot \frac{d}{dy} T_h \cdot g(y) = \frac{1}{\beta} \\
\end{align*} \]

(assuming \(\beta \neq 0 \))
Define the operation (Lie derivative)

\[L_f h = \frac{2h}{2x} f \]

where \(h \) is a scalar function and \(f \) is a vector field.

Define \(L_f h = h \)

and

\[L^{k+1}_f h = L_f (L_k f h) \]

With these definitions we have relations,

\[T_k = L f T_1 \quad k = 2, 3, \ldots, n \]

And we have the equations

\[\begin{bmatrix} L_k f T_1 \\ f \end{bmatrix} = 0 \quad k = 0, 1, 2, \ldots, (n-2) \]

If we can solve these equations for \(T_1 \), then by using the recursion in above we can define \(T_k, k = 2, \ldots, n \) and

\[P = \left(L_g T_n \right)^{-1} \]

\[\delta g \beta = \text{identical to} \quad \text{then} \quad \alpha = -\frac{L_f T_n}{L_g T_n} \]
What about solvability of \mathcal{L}_{T_1}?

Define

$$\text{ad}_f g = \left(\frac{\partial g}{\partial x} \right)_f - \left(\frac{\partial f}{\partial x} \right)_g$$

and also

$$\text{ad}_f g = \text{ad}_g f$$

Therefore

$$\text{ad}^{k+1}_f g = \text{ad}_f \left(\text{ad}_g^k f \right)$$

Theorem

There exists, (locally in a suitable neighborhood of \(\theta \)) a function T_1, s.t.

$$L \mathcal{L}_{T_1} g = 0 \quad \text{for} \quad k = 0, 1, 2, \ldots, (n-2)$$

Proof

(i) $\{g, \text{ad}_f g, \text{ad}_f^2 g, \ldots, \text{ad}_f^{n-1} g\}$ is a set of linearly independent vector fields.

(ii) $\{g, \text{ad}_f g, \text{ad}_f^2 g, \ldots, \text{ad}_f^{n-2} g\}$ is a set of vector fields satisfying the involutivity property.
\[p(x), q(x) \in \text{this set} \]

\[\Rightarrow \left(\frac{\partial q}{\partial x} \right) p(x) - \left(\frac{\partial p}{\partial x} \right) q(x) \text{ also belong to this set} \]

Remark: This existence result is a consequence of Frobenius' Theorem in differential geometry.

Example:

\[\dot{y} = f(y) + g(y) u \]

\[f(y) = \begin{bmatrix} y_2 \\ -a \sin(y_4) - b(y_1 - y_3) \\ y_4 \\ c(y_1 - y_3) \end{bmatrix} \]

\[g(y) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

\[p \neq 0 \quad \forall \theta \]
\[L_y T_1 = 0 \iff \frac{\partial T_1}{\partial y_4} = 0 \]
\[\Rightarrow T_1 \text{ independent of } y_4. \]

\[T_2 = L_f^{-1} T_1 \]
\[= \frac{\partial T_1}{\partial y_1} y_2 + \frac{\partial T_1}{\partial y_2} \left(-a \sin y_1 - b (y_1 - y_3) \right) \]
\[+ \frac{\partial T_1}{\partial y_3} y_4 \]
\[L_y T_2 = 0 \iff \frac{\partial T_1}{\partial y_3} = 0 \]
\[\Rightarrow T_1 \text{ independent of } y_3 \]
\[\Rightarrow T_2 = \frac{\partial T_1}{\partial y_1} y_2 + \frac{\partial T_1}{\partial y_2} \left(-a \sin y_1 - b (y_1 - y_3) \right) \]

\[T_3 = L_f^{-1} T_2 \]
\[= \frac{\partial T_2}{\partial y_1} y_2 + \frac{\partial T_2}{\partial y_2} \left(-a \sin y_1 - b (y_1 - y_3) \right) + \frac{\partial T_2}{\partial y_3} y_4 \]
\[L_y T_3 = 0 \iff \frac{\partial T_3}{\partial y_4} = 0 \iff \frac{\partial T_2}{\partial y_3} = 0 \]

\[a, b, c > 0. \]
\[b \frac{dT_1}{dy_2} = 0 \implies \frac{dT_1}{dy_2} = 0 \]

So \(T_1 \) is independent of \(y_2 \)

So \(T_1 = T_1(y_1) \)

Pick \(T_1(y_1) = y_1 \) \((\text{trivial}) \).

Then \(x_1 = y_1 \) \(/\!\!/ \)

\[x_1 = y_1 = y_2 \quad (\text{from model}) \]

But \(x_1 = x_2 \) \((\text{linear system}) \)

So \(x_2 = T_2(y_1) = y_2 \) \(/\!\!/ \)

\[x_3 = T_3(y_2) = \dot{x}_2 = y_2 \]

\[= -a \sin y_1 - b (y_1 - y_3) \quad (\text{non-linear model}) \]

\[x_4 = T_4(y) = \dot{x}_3 = -a y_1 \cos y_1 \]

\[- b (y_1 - y_3) \]

\[= -a y_2 \cos (y_1) - b (y_2 - y_4) \]

Check \(\beta \) & \(\phi \) are well defined \(/\!\!/ \)