A little detour on measure etc

(see Real Analysis by H. Royden for full scoop)

(a) Any set Ω has associated to it the set 2^Ω of all subsets of Ω. Consider a subcollection $A \subseteq 2^\Omega$ of subsets of Ω satisfying

(i) $\Omega \in A$

(ii) $A \in A \Rightarrow A^c$ (the complement of A in Ω) belongs to A

(iii) $A_n \in A$, $n=1,2,\ldots$ $\Rightarrow \bigcup_{k=1}^{\infty} A_k \in A$

Such a collection A is called a σ-algebra of subsets of Ω. Clearly 2^Ω itself is a σ-algebra.

So is the (very small) collection $\{\emptyset, \Omega\}$ where \emptyset denotes the empty set.

(b) A measureable space is a pair (Ω, A), where A is a σ-algebra of subsets of Ω.

(c) A set function $\mu : A \rightarrow [0, \infty] \cup \{+\infty\}$ is a measure if

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{k=1}^{\infty} \mu(A_n)$$

for A_1, A_2, A_3, \ldots a sequence in A

such that $A_i \cap A_j = \emptyset$ for $i \neq j$.

If further $\mu(\Omega) < \infty$, then we say that it is a finite measure.

It is clear that $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$
(d) Suppose $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are two measurable spaces. Then \(f : \Omega_1 \to \Omega_2 \) is said to be a measurable mapping, provided \(\mathcal{B} \in \mathcal{A}_2 \Rightarrow f^{-1}(\mathcal{B}) \in \mathcal{A}_1 \).

(e) Given any \(\mathcal{G} \subseteq 2^{\Omega} \), there is a \(\sigma \)-algebra \(\mathcal{A} \) such that \(\mathcal{G} \subseteq \mathcal{A} \subseteq 2^{\Omega} \) and furthermore it is the smallest \(\sigma \)-algebra with this property. We refer to it as the \(\sigma \)-algebra generated by \(\mathcal{G} \), often denoted as \(\mathcal{A} = \sigma(\mathcal{G}) \).

(f) Suppose \(\Omega = \mathbb{R}^1 \) and \(\mathcal{G} = \) collection of all open intervals of \(\mathbb{R}^1 \). Then the \(\sigma \)-algebra generated by \(\mathcal{G} \) is referred to as the Bochner \(\sigma \)-algebra \(\mathcal{B}(\mathbb{R}^1) \). It can be shown that every interval, open, closed or semi-open, in \(\mathbb{R}^1 \) is in \(\mathcal{B}(\mathbb{R}^1) \) and is thus a Bochner subset of \(\mathbb{R}^1 \).

(g) We say that \(f : \mathbb{R}^1 \to \mathbb{R}^1 \) is a measurable function if \(f^{-1}(\mathcal{B}) \subseteq \mathcal{B}(\mathbb{R}^1) \) whenever \(\mathcal{B} \subseteq \mathcal{B}(\mathbb{R}^1) \).

(h) Any continuous function is automatically a measurable function.

(i) There is a unique measure, the Lebesgue measure \(\mu : \mathcal{B}(\mathbb{R}^1) \to [0, \infty) \cup \{\infty\} \) such that \(\mu((a,b]) = b-a \).
Lebesgue measure is clearly not a finite measure.

(i) A function \(f : \mathbb{R}^n \to \mathbb{R}^n \) is said to be simple if it is of the form

\[
f(x) = \sum_{i=1}^{N-1} c_i \cdot \mathbb{X}_{\mathcal{E}}(x)
\]

where \(-\infty < x_1 < x_2 < \cdots < x_N < \infty\) \(N\) finite, \(c_i \in \mathbb{R}^n\) and

\[
\mathbb{X}_{\mathcal{E}}(x) = \begin{cases} 1 & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}
\]

(k) The integral \(I(f) \) is defined as

\[
I(f) = \int f(x) \mu(dx)
\]

where \(\mu(dx) \) is the Lebesgue measure can be defined for simple functions as

\[
I(f) = \sum_{i=1}^{N-1} c_i \cdot (x_{i+1} - x_i)
\]

Theorem: If \(\{f_n\} \) is a sequence of simple functions,

\[
f_n(x) = \sum_{k=1}^{N(n) - 1} c_{i_k} \cdot \mathbb{X}_{\mathcal{E}}(x)
\]

and similarly

\[
f_n(x) = \sum_{k=1}^{N(n) - 1} d_{i_k} \cdot \mathbb{X}_{\mathcal{E}}(y)
\]
and \(f_n \leq f_{n+1} \), \(g_n \leq g_{n+1} \) \(n = 1, 2, \ldots \)

and \(f_n \to f \) and \(g_n \to g \), then

\[
\lim_{n \to \infty} I(f_n) = \lim_{n \to \infty} I(g_n)
\]

Using the above result and using the fact that for each measurable function \(f \) there exists \(\{f_n\} \) a sequence of simple functions \(f_n \leq f_{n+1} \) and \(f_n \to f \) as \(n \to \infty \), we can define unambiguously

\[
I(f) = \lim_{n \to \infty} I(f_n)
\]

for any measurable function. This is the Lebesgue integral of \(f \).

(6) Two functions \(f_i : [0, \infty) \to \mathbb{R} \), \(i = 1, 2 \) are said to be equivalent \(f_1 \sim f_2 \) if

\[
\mu(\{x : f_1(x) \neq f_2(x)\}) = 0.
\]

We denote the equivalence class of \(f \) to be \([f]\).

The spaces we define below are all spaces of equivalence classes of measurable
functions. To avoid awkward notation notation, we will continue to use \(f \) when we really mean \([f]\).

(m) The \(L_p \) spaces: \(1 \leq p < \infty \)

\[L_p [0, \infty) = \left\{ f : [0, \infty) \to \mathbb{R} \mid f \text{ measurable}, \quad \int_0^\infty |f(x)|^p \mu(dx) < \infty \right\} \]

\[L_\infty [0, \infty) = \left\{ f : [0, \infty) \to \mathbb{R} \mid f \text{ measurable}, \quad \text{ess sup}_{x \in [0, \infty)} |f(x)| < \infty \right\} \]

(Here, \(\text{ess sup} f = \sup f \) where \(A \) is a suitable set of measure zero.)

Theorem

(i) \(L_p \) with \(\|f\|_p = \left(\int |f(x)|^p \mu(dx) \right)^{1/p} \) is complete.

(ii) \(L_\infty \) with \(\|f\|_\infty = \text{ess sup}_{x \in [0, \infty)} |f(x)| \) is complete.

(iii) \(L_2 \) is a Hilbert space with inner product

\[\langle f, g \rangle = \int_0^\infty f(t) g(t) \mu(dt) \]

and \(\|f\|_2 = \sqrt{\langle f, f \rangle} \).