Polynomial Methods

Division of polynomial by polynomial

Let \(a(s) = a_0 s^n + a_1 s^{n-1} + \ldots + a_n \) and
\(b(s) = b_0 s^m + b_1 s^{m-1} + \ldots + b_m \) be two scalar polynomials with \(b_0 \neq 0 \), \(n > m \).

There exist unique polynomials \(q(s) \) (the QUOTIENT) and \(r(s) \) (the REMAINDER) such that
\[
a(s) = q(s) b(s) + r(s)
\]
and \(\deg r(s) < \deg b(s) \).

The algorithm which accomplishes division is the EUCLIDEAN algorithm.

\[
a(s) = a_0 s^n + a_1 s^{n-1} + \ldots + a_n
\]

\[
= a_0 b_0^{-1} s^{n-m} (b_0 s^m + \ldots + b_m)
\]

\[
+ (a_1 s^{n-1} + a_2 s^{n-2} + \ldots + a_n)
\]

\[
\quad - (b_1 s^{m-1} + b_2 s^{m-2} + \ldots + b_m) b_0^{-1} b_0^{-1} s^{n-m}
\]

\[
= a_0 b_0^{-1} s^{n-m} b(s) + r^{(1)}(s)
\]

where \(r^{(1)}(s) = (a_1 - b_1 a_0 b_0^{-1}) s^{n-1} + (a_2 - b_2 a_0 b_0^{-1}) s^{n-2} + \ldots + a_n - b_n a_0 b_0^{-1}
\]

\[
= (a_{n-m} - b_{m} a_0 b_0^{-1}) s^{n-m} + a_{m+1} s^{n-m-1} + \ldots + a_n
\]
and \(\deg (\gamma'(s)) \leq n-1 \).

Thus the above substitution lowers the degree of \(\gamma'(s) \) by 1. Repeat by dividing \(\gamma'(s) \) by \(b(s) \) to obtain \(\gamma''(s) \) and \(\bar{\gamma}''(s) \), etc, of degree \(\leq (n-2) \), until we end up with \(\gamma(s) \) with degree \(\gamma(s) < m \).

This is when the algorithm terminates.

Unique follows from observation that

\[
\text{if } \quad a(s) = q(s) b(s) + \gamma(s) = \tilde{q}(s) b(s) + \tilde{\gamma}(s)
\]

where \(\deg (\gamma(s)) < \deg (b(s)) \) and \(\deg (\tilde{\gamma}(s)) < \deg (b(s)) \),

then,

\[
(q(s) - \tilde{q}(s)) b(s) = (\tilde{\gamma}(s) - \gamma(s))
\]

But r.h.s has degree < \(\deg (b(s)) \)
while l.h.s has degree \(\geq \deg (b(s)) \),

if \(q \neq \tilde{q} \) and \(\gamma \neq \tilde{\gamma} \). Hence at least \(q = \tilde{q} \) or \(\gamma = \tilde{\gamma} \).

By the same degree consideration, it must mean \(q = \tilde{q} \) and \(\gamma = \tilde{\gamma} \). □
Finding g.c.d. of $a(s)$ and $b(s)$.

Without loss of generality, assume $\deg(a(s)) = n > \deg(b(s)) = m$

Apply Euclidean division repeatedly as follows:

\[a(s) = q_1(s) b(s) + r_1(s) \quad \deg(r_1(s)) < \deg(b(s)) \]

\[b(s) = q_2(s) r_1(s) + r_2(s) \quad \deg(r_2(s)) < \deg(r_1(s)) \]

\[r_1(s) = q_3(s) r_2(s) + r_3(s) \quad \deg(r_3(s)) < \deg(r_2(s)) \]

\[\vdots \]

\[r_{p-3}(s) = q_{p-2}(s) r_{p-2}(s) + r_{p-1}(s) \]

\[r_{p-2}(s) = q_p(s) r_{p-1}(s) + 0 \]

where at the p^{th} stage remainder $= 0$ since remainder is always lower in degree than the divisor. We say r_{p-1} divides r_{p-2} exactly (denoted by $r_{p-1} \mid r_{p-2}$). By substitution in the previous step, it follows that
\[r_{p-1} \mid r_{p-3}, \quad r_{p-1} \mid r_{p-4}, \ldots, \quad r_{p-1} \mid r_{i} \quad r_{p-1} \mid b \quad \text{and hence} \quad r_{p-1} \mid a. \]

Thus, \(r_{p-1} \) is a common factor of \(a(5) \) and \(b(5) \). We need to prove that \(r_{p-1} \) is the g.c.d.

Observe

\[r_1 = 1 \cdot a + (-q_1) b \]
\[r_2 = 1 \cdot b + (-q_2) r_1 \]
\[= 1 \cdot b + (-q_2) (1 \cdot a + (-q_1) b) = (-q_2) a + (1 + q_1 q_2) b \]
\[r_3 = 1 \cdot r_1 - q_3 \cdot r_2 \]
\[= 1 \cdot (1 \cdot a + (-q_1) b) + (-q_3) (-q_2) a + (1 + q_1 q_2) b = (1 - q_2 q_3) a + (-q_1 - q_3 + q_1 q_2 q_3) b \]

\[r_{p-1} = x \cdot a + y \cdot b \]
Hence any exact divisor of \(a(s)\) and \(b(s)\) also divides \(r_{p-1}(s)\) exactly. But \(r_{p-1}\) divides \(a\) and \(b\) exactly.

Thus \(r_{p-1} = \text{g.c.d.} (a, b) \Rightarrow \)

We say \(a(s)\) and \(b(s)\) are \textit{coprime} (or \textit{relatively prime}) if \(\text{g.c.d.} (a, b)\) is a constant, (taken to be \(= 1\)). Then denote

\[(a, b) = 1 \]

Theorem [BEZOUT]

Let \(a(s) = a_0 s^n + a_1 s^{n-1} + \ldots + a_n \)
and \(b(s) = b_0 s^m + b_1 s^{m-1} + \ldots + b_m, \)
\(b_0 \neq 0\) and \(a_0 \neq 0\). Then

\[(a(s), b(s)) = 1 \quad \text{(coprimeness)} \]

\(\iff\) there exist (necessarily unique) polynomials \(x(s)\) and \(y(s)\) such that

\[x(s) a(s) + y(s) b(s) \equiv 1 \]
and \deg \((x(s)) < m, \deg \((y(s)) < n. \]
Proof of Bezout's Theorem

(⇒) We showed that

\[\text{g.c.d. } (a(s), b(s)) = \gamma_{p-1}(s) = x(s) a(s) + y(s) b(s) \]

Thus if \(\text{g.c.d.} \equiv 1 \) then

\[x(s) a(s) + y(s) b(s) \equiv 1 \]

(⇐) Suppose \(\exists \) solution to

\[x a + y b \equiv 1 \]

We wish to prove \(\text{g.c.d. } (a, b) \equiv 1 \)

Suppose to the contrary that there is a polynomial \(\Theta(s) \) of degree \(> 1 \) such that \(\Theta | a \) and \(\Theta | b \).

Then

\[x a + y b = x a_1 + y b_1 \Theta = (x a_1 + y b_1) \Theta \]

Let \(\lambda \in \mathbb{C} \) be such that \(\Theta(\lambda) = 0 \)

\[x(\lambda) a(\lambda) + y(\lambda) b(\lambda) = (x(\lambda) a_1(\lambda) + y(\lambda) b_1(\lambda)) \]

\[\equiv 0 \]

\[\Rightarrow \]
But \(x(\lambda) a(\lambda) + y(\lambda) b(\lambda) = 1 \) by hypothesis. Hence we have a Contradiction. Hence \(\text{g.c.d.}(a, b) = 1 \).

Applying Bezout's Theorem to controller design.

Recall that given a rational, strictly proper transfer function

\[g(s) = \frac{b(s)}{a(s)}, \quad a, b \text{ coprime} \]

where \(a(s) = s^n + a_1 s^{n-1} + \ldots + a_n \)
and \(b(s) = b_0 s^m + b_1 s^{m-1} + \ldots + b_m \)
where \(m \leq n-1 \) and \(b_0 \neq 0 \), we can write,

\[a(s) \xi(s) = u(s) \]

\[y(s) = b(s) \xi(s). \]

From coprimeness of \(a \) and \(b \) and Bezout, there exist unique polynomials \(x(s) \) and \(w(s) \), \(\deg(x) < \deg(b) \), \(\deg(w) < \deg(a) \) such that,
\[z < + Wb = 1. \]

Consider the "controller" structure with \(m(s) \) a polynomial:

Then \(u(s) = V(s) - m(s) \hat{\xi}(s) \)

\[= V(s) - m(s) \left(\hat{z}(s) u(s) + W(s) y(s) \right) \]

\[= V(s) - m(s) \left(\hat{z}(s) a(s) \xi(s) + W(s) b(s) \xi(s) \right) \]

\[= V(s) - m(s) \left(\hat{z}(s) a(s) + W(s) b(s) \right) \xi(s) \]

\[= V(s) - m(s) \xi(s) \quad \text{(Bezout)} \]

We thus note \(\hat{\xi} = \xi \).
Hence

\[u(s) = a(s) \hat{y}(s) = v(s) - m(s)\hat{y}(s) \]

\[\Rightarrow (a(s) + m(s)) \hat{y}(s) = v(s) \]

Thus the closed-loop transfer function is

\[g_{\text{closed}}(s) = \frac{b(s)}{a(s) + m(s)} = \frac{y(s)}{v(s)}. \]

The approach above has the flaw that, while \(\frac{b(s)}{a(s)} \) is realizable as a finite dimensional linear system, the blocks \(\hat{z}(s), u(s) \) and \(m(s) \) are not realizable in the same sense since they are polynomials.

Notice that the above structure is reminiscent of the observer-controller structure derived via state space theory.

The situation can be remedied by using precisely this intuition:

Consider again state-space theory of
observer controller design

\[\dot{x} = Ax + Bu \]
\[y = Cx \]
\[\hat{x} = (A - HC)\hat{x} + Ky + Bu \]

Fig 1

re-drawn as:

\[\dot{x} = Ax + Bu \]
\[y = Cx \]
\[\dot{\hat{x}} = (A - HC)\hat{x} + Ky + Bu \]
\[\hat{e} = K(\hat{x} + Bu) \]

Fig 2

and equivalently in frequency domain as:

\[+ \]
\[G(s) \]
\[M(\theta) \]
\[+ \]
\[NG \]

Fig 3