
1 o

I A: :S
i,,

.h Tar

m'ny K. F.

Jay Smii

0co r systems achieve their
St and parallelism. In paral-

tj F rtant aspects is the pipelin-
, in which a number of opera-

uentially. A typical sequence
of instruction fetch, instruction

eneration, operand fetch, ex-
eing consists of ex-

tions q etl,itqh each in-

rmprehe
ore deta
st-eff eans to
il_Iinstructionsl~
W sferent pha
_nt 2i ware is

ls eldom real _ the
run o faster than it

h e the same averag
n variation in one or more the
oth flow of instructions. For e

e of the pipeline will general run

al divide" than for "integer
I ti an instruction to advance
is called tpipeline stage time, or

hine cycle ti m ost machines.
itered in pipelines ocr because of
resources (e.g., conflicts in access-

file) or failure to have an input
uses the output of the im-

mediatelyp n e as part of an address calculation,
but that prev has not passed the execute
stage of the pipeline). Cach misses are another
major source pipeline delay.2
One of the major problems in designing a CPU pipe-

line. is to ensure a steady flow of instructions to the initial
stage of the pipeline. Such a flow can be either impeded
or interrupted for two reasons. The first is that the
menory access time is so long that a request by the in-
strucl fetch stage for another instruction will not be
satisfied in one PST. The second is that a change in the
expected sequence of instructions, due to a branch for
example, will cause the co ts of part of the pipeline to
be discarded, and-j0Tjeline to be reloaded. This
'"'brar

out-

ich prob is closely related to the timely fetch
, since the penalty for a branch will de-

e time required to fetch the branch target.
branch problem can be explained as the "execu-

'of Ibranch instruction, which consists of causing
ru ion fetch unit to select a different instruction

instruction to execute. Thus, considering the
ine rie 1,all partially executed instrtions in
ges twl_gution must be discarW an ad-

eis al untere e new,

;e intuc te

in
which arefscu ail

pIe instr ion str prefetch ra targ

fetch targ prepare t nch, delayed branch
not taken , and anch target buf
branch tar uffer is a smi oiati menu
retains the a of recenti brani

their targets (des ns). The buffe
whether the bran w be taken this I

what its target wibe. e instruction fetch,st

I e in-

ways,

l1iti-
;et, -
h, take
fer. The
nory that
ches and
predict t

_

0 rV

E' }ts
t+01 0 0

WtV h J:t1 * |S * v
erkeley

ern

)t ins
s are

AN

pto-

continues by fetching instructions from the predicted
target address.

This article presents a systematic approach to selecting
good prediction strategies, which is based on 26 program
address traces grouped into four IBM 370 workloads (sci-
entific, commercial, compiler, supervisor) and CDC 6400
and DEC PDP- 1I workloads. Results show the effective-
ness of various prediction strategies, the number of past
branches that should be remembered, the amount of
state required for each, and the effect of workload and
branch type. Improvements of 5 to 20 percent can be ex-
pected in CPU performance when a branch target buffer
is installed. Issues relating to the implementation of real
branch target buffers are also considered, as are alter-
native approaches.

Existing approaches to the branch problem

Loop buffers. A loop buffer is a small, very high speed
buffer maintained by the instruction fetch stage of the
pipeline. A single loop buffer contains one set of sequen-
tial instructions, while multiple-loop buffers contain n
sequences, one per buffer, but the contents of the vari-
ous buffers need not be contiguous with each other. The
loop buffer functions in two ways. First, it contains in-
structions sequentially ahead of the current instruction
fetch address; thus, instructions fetched in sequence will
be available without the usual memory access time. Sec-
ond, it will recognize when the target of a branch falls
within its contents (including backward branches) and
will deliver those instructions without accessing memory.
All instructions for a loop could be fetched entirely from
this buffer; hence, the name "loop buffer." Among the
machines using a loop buffer are the CDC Star-100 with
a buffer of 256 bytes,3 the CDC-6600 with 60 bytes,4 and
the CDC-7600 with 12 60-bit words.5
The Cray-I maintains four loop buffers,6 and replaces

their contents in a FIFO manner. (This structure can also
be considered to be a four-block, associative instruction
cache.) The idea here is that a loop may consist of several
noncontiguous instruction sequences and may be better
captured this way than by a mechanism that permits only
one sequence.

Multiple instruction streams. A normal pipeline suffers
a branch penalty because for a conditional branch it
must make a choice-the instruction fetch unit must
fetch either the next sequential instruction or the branch
target. A brute force approach to this problem is to
replicate the initial stages of the pipeline so that both the
sequential instruction and the potential branch target can
be fetched, decoded, and processed. However, this ap-
proach gives rise to three problems. The first is that the
branch target cannot be fetched until its address is deter-
mined, which may require a computation, such as when
a displacement is added to both a base and index register.
This computation requires time even when all operands
are available. Further delays may occur when operands
are not available, such as when an operand is the result
of an uncompleted instruction or when a memory fetch is
required. Contention delays are also a problem, for ex-

ample, in accessing the register file. Also, additional
memory traffic is generated, further creating resource
contention.7
The second problem in replicating the initial stages of

the pipeline is that if instruction I is a branch instruction,
then additional branch instructions may need to enter
the pipeline (either part) before I can be resolved as
taken/not taken and its target determined. Riseman and
Foster8 found that for a pipeline of typical length, more
than two branches would have to be processed this way
to yield a significant improvement, and the net amount
of hardware required would be impractical.
The third problem is that the cost of replicating signifi-

cant parts of the pipeline (including instruction fetch, in-
struction decode, operand address generate) is substan-
tial, making this mechanism of questionable cost-effec-
tiveness.

Despite these problems, a number of machines follow
multiple instruction streams, including the IBM
370/168,9 which can fetch one alternative instruction
path and the IBM 3033,10 which can pursue two alter-
native instruction streams. The 3033 fetches an alter-
native instruction stream only when the stream is
predicted to be taken; the prediction depends on the
branch condition mask in the instruction, the operation
code, and the target address operand register. These
machines do not decode the alternative instruction
paths. Hughes" proposes that fetching alternative in-
struction streams be combined with predictive informa-
tion from a branch target buffer so that the most likely
instruction stream is decoded.

r

I

1
b i
| |

11
|

1
| | | |

Figure 1. Typical pipeline stages in a 3701ike architecture.

Figure 2. Typical pipeline time sequence showing the in-
structions executed per stage.

January 1984 7

I'rcI&tc'th hrainch target. Rathicci ciiiim ncplilctii "CVcr

'iiciici itcL"ci oi thic ' c ii cc illic, \\Ci tCail cduplii lci II llci
cliiLc ilcclc'ici ici-c Ict ccli itcIrtilcc tiltciii il i, iiicc

ii 1iiichii I' ciiiiici c ic dlc 'ipccl'i.ill icc iciC iccc iill clcc itCciiii

1llld IIInl,tct.l.l4. tlat t.tli7Lt ol' tl.' hrn mcll.l thuils il' lit'
h3 l-mic P, lotoliLl to 15.' t Ak.'lA ti.' t.al-'.t P loadcd+t il11-
ilicll' iiclitiiic icc iiiiiwr ictio llcc clc ` i t.cC() 't h iihlC,

\\1111 no1 'IddillonalC111 It' m

.1t11a .lltructl ll I'l ch

1

',lSl\.rillA
i iiciilii c(ctii11ic cii itcCc tiilc ii collcdCc-c(icii I -ci'ct.licci)

"cii'(iic' `, i cilot Icicwc lc cl Ic ilc itioli ll Ilcci 'ictlic .'cii

I lc' 113\1 3(il 9t1 tii s thPii iiicchL mll iil to ilicci tih
cliciiiiiic o\(Iciiiioi'i'c

D)alt I'uich tar-sc 1. Ii ihic l3 ,() i-i'iic .i iiic
'ii cii- ''c' cl ctiiiOiii ii ctiiiihiii ci iii iii i ii .' ciolt I ,,i

i] o ree1''0 'V.t'"I d (1'l-ll0111 01t'110 \) illl lllLtHi iOl I; 1".'

cii iiiii I dillo'1-hl c doii1iiiii oii ii ii ii i ii dIii lc

ici 1(ilill4iii ollcii p ii ic h iicCc cicic i' c ili cc'to iroiichiilcCi t

I15r''f()'3 to.hrdCh li. i'\d.' iiiii.'s(iiii i'it\S(ccliii

l' I it\ cl\ 11cc1 i cli 1 11 clatiii 1c1-cl c ii 'l 'it i' -"Ili

11 360 91iii lici chit ich iiim-li I,,i~chi I iid cI ih1itINV ci1

tYicii ic i\ iicrmd ciii'iticiiri chIii' 'iicii, tiic -ci i-,

clicd citolilic illililtiictillJiii cicidcii ol!c iliitcp cclic.
1-'1111cl'' 111,1l1 lh.'IlL, pL...'d III I, I't"lsl 't'," t1' 1'olI- kmd(!t,ol h -

Iila,' t'ClIt lo th Idd'.vl(l 't, I'mt 'o lIdd

Irepii rit tio Irincch'iI liic' ciii iin ct, ASC com-

p Il)'I-' t raC' .t Ioh ic'l hci.thito \\ l icl itllcillc itli itcv p -i
i'il i lh ilii r ic i l'l- cill i. icillt ii Iiitici. 'lull .'I
Ii cliimic ii ''l1d 1-ic lc ' 111ii iii cii 'ciii .c iii Ci ci

t i' iil.lchli 10 Pti- t1 1 'r ill it1cci-mi liiL'l hi' lli 'i

th111wt 1)1l,c'I.tcll ,.'(jLIClItM ll\. I lic. .'I''x't.l.'\CIC,, (o,t'il'i"
s..la'(1.'p5.'ld1 oII+ tilt ltoe ova14.,othC1l llal)ilwl- cort

tic Cbtl rai nch. I illclic o ci i\ ic icidihc' ith i I'

1)iii '(liiilti'a.ciiinlll \il1 1111ciiii-li ii I Ilil is t}. ciii

id ici1i11'ti ci t c cl[A cii1 l icII,tdhl il fil. \lttccicc/4i 1III

hC1 }O IaIlO ICl t I CI ICCi' I.''lt tI I'I'.'.'t1,2(t I C;1((Cl .11,11 dc-1

citicditiid lc iii ilcll ili 11ic "cii' /I3 \ chic' liii

il htixii'i 1ih' dichi 1 cdi1 1c cio i it ldclt iiliddii', il it

/\- ', tltl illl 4 s t tlk.I ,tti Ii.l _Hi t1l," Cll .-

/ 111 ,tr ilclio i ihiUt O I' /1 1 1ih i 1Iii I' iii /f

ciii ii cluiiliii oI' tociii\ciIici IIto o/ic14. I'cll It(i

141111 iiclc Il itch iii\1 "' 'c,cti ci cii Ai ti tiicit\}iic

critiii I l ll dla ihd dCit\li c1ht14 tcta' ildi ticllIl tMAHIii c

litdil i i c'lt ii(t 1 tici ci iii c iI'tithi ;I Ilici.tiici 11ic hi t
cutdcdl i (cIli1I. ticii lid ciili toClii o2, ot' ;t1 t -

Iii ci cilC lMIc CCI\iitl cPi 'cd~LiI 'ic 'ci (iM Clci lcl. c titC

ctiiic 'I'cihP, d\'ci'tciCi iccl iic' ltrcciii 'l ci1 ciiiiiiiiidit hi clii cilC II I(i i-, dri' l IdIidii II toilt ci 11111t

cicic cIii cl tlt 11t'iii lticIioii It hi ic c)
II d iiiL c ;idcl i;l. Wit cili (ii k \id ir ll iiiii,\Ic cii-

COMtIatt'l' prohi-cin-(ln.ll". 1 1.c illo"lI'tiL,isi';1c ilt i' t1lzlt
Iltillmlla prL'ioa-,1111111cf- \\IIi'llliLal it \z'1-\ (ill'i.lcilt to \\I-it.
COCIC volC0111,1i11M II,,t l-Illt oIl" (trm;1 l. ict) \\]iII1 d1tl;l\cccl1''--

0)&lITI' ,((. l'OF- ',LICII t la5llikJ llll 1za1911 n'.h lios ti-

miiC iidc \ ciI\ cciii 'iii C0iiiilii 'I lic dc'Ltvc(i
rm lch .llait la X.ll i iI \ IIc li cl .111A m I l.lloit ..h C u"-' ;1l ll(l n.e;X

..ciii citicc to p 'CCCI iip il '\i IiL chiC. III iddcilillllc
ii1 tiii po(1 litKIi ii cCCcccici ()I' ili cidAIl ci hi iiic. ii ii hi

'. iI/Cdi it iii Vi. h t hicc (o 1lc c.ici 'clilc z/, I Itic

cill, aitllcr it h !iii hi

D)tplnicL 111c'St prlohIcI'll". 1\w0 L'\jIn'iaL'CIfl1 comp1111tit1'-
-ii- Ictliii\ [I"iiii tic dci \i dci 111 1JIiii: iii II13" "ii liii

ii ciii 1'1 ii ii (' i cicol ld Iii I 1c 3\1 hi d
\Vi '. lRcli iCi''ii odi Yliiiclllii,o m li 1 I 3Ill 1c c '1

\'11 'cii 4t.4tII iii ''cicici Eci i i ' ii ci)\ 11l ici"l l'hi di (;1ii

c'l iil'ci II i ii ci ii ii cii ii ii di iiiiilil.iiiALL cl n

1'.c R.il Ii'i lll c 1 0itoii ic' cl i1 'c1(iI -I iii dc i ii iiiilcii

cclii 2 III'll lii i ic \ li' li 11 1ci Ill CIii lh i

c')it' 1 l liii i'i 1'' ciloiiicliisi liii 1 iii cii chi'tl ciiiii)t'

I'm-' ilic RIS% '4'm1ilptil1 r'1

1ie.1zi 1ot t.akenl s\ ich. A, \\ c \\'Iill m1(\\1ticr, \\c. t.m

i't h iii ii i t iir ii ii 'cii ci ' i i ih A cii 'I, CAI Ii c ci in

iioi tA ciO Ilc 'lll;11 'i ciC'iiii c ii i 1i'ic.1tI; Ilcdi \i't)' SIlOc\ t'r\ 10tk1)'10 111 iI '1l'l11't121

Br0CdrkiCd trubhifh1ACr.I ic. i'i A1}1i ii1ii't'i hut I'ic I'i ''

' i hu ll ccidt I'ilccihich i d ilc I ii' iiiitiIilic' 'I i ii cii I i ii c li i icc \iciciil.cc ii ih Ic lc i

c'\lltic'ictciIkii c i iliiiii1 i11 ii\\ ii 'r cc)icii'iii iicc'-ci
ii' . ic iiic 1 1 .t i'cI

I
i c c icit IIi

2'()lillNlilt'l's \\ () lNit S 1'' ()l'z'(l \\iit'I1-C Ich tl'trlct'l(l
i)1Ci it c oiC c 'iic,i icc itilcc i iiI cii i cicilild c' c li'c'iii cii '

iici hi ccciiciitc) id lit'iclcc tici ,II iitcc tIl 'icii Iil l i't ic'

tl()ll \1 \\1'()IIL" (ilict W r m-1(1 " i). 1\\() \\I-()!IL' prCo.11iC1i(0ll'
ill ItW \ C 1 ll.IIIC 11 lhit 10 tC Vial \\C 101[

.Lim'l' till,1ic'11,1IlttlU i I IICtl Ic'1 ti0t11 1'- (It'LI\8 (111Ct' o l'"triL

Ultl(llL'S' t'OIlll7tllUlLiO mid.1thc8t llO' 'a1'At 1'ct'1h.
W ddcJ1cc tikcc iicc h1 cc c iTic i\ C 11 '' tcii pii ii I tiici
''cii iii''iill iiicc cl ccci' c(Icticiic'l l 'IJ iii'S 'IdW c ii' 1'(ii,'

I .ok,l-.lhcad rcsolultion.- .,\rw)1ililr propola cl\ oltitliOIl 10(

icc cI- lccI I iiic'tc1t \cii [cc Iii IoI .iIII 131 c ill 1ii \ iic itccir

l\ Iii ll c IItClc ,c11 1cii iid. iiil hi ciii ciiici cii 'ci liciBrancht'\'l targt' t'ItitiOIlr Thc)1thit'm'ch tmLt hu ITc2'AlCi Fcl

3) lll1P;1;a l.;Alet..icmcniory lati1.(cltc 1\\Ith tz (\ (
tI lA', t1.1 lI (-3t1W (4 tII i)p 1IC 'H111'lsoB.-im l' '-

C\CC LItCdll 'tKlr*tlt hltttr 1'1-11.t1 ;l1[101 l t;lj r.lI-)C I-.1 (IprC lc_
tl) iSl 81;1_ \\ ;1Ct'}CI' 111F 1101' tIIIC ()ti-LICt'io\ll](hl-tI \Illtl'lt'

t cil ,mid9'.t'}] IlN llot' 2'I-tElilt tlt r-. t1(1L%a l'h .1 I)'m'\ ithitN

I'ct'tll tt'(T il ompl'l'tOIl illt'Ol'll-Uti()l ilm lt l)''lltL'ml l)Tt lic

11'tRiI CHtO llL'a I1Ir'1' ()1' Illt th }111ll l'l' O lt1;t11tiii- i"allm tch

iliciizi 1 l.clci 133 Illacictolll olNMitcthcrllhiPaSlltiol

klto hcLtAcn.;11l1'tlict' i-cli tion'13113 1il.lchriS \\Ill oc.l

I F, t IIt
.

1CLa 1P) Ct 'dl I'CYIi'tiCI i

C lUl'' L l,Cd I 1)lC I C II
'}

II\il 0 t'
*'l1',tructiml tll'ct.li-eaddll-.Ss. Wi.lcl i llc to-ic.1.. Ictilal.v
FColtelCCI .It tIIC C\CCUIC. 't][(WC, OICt 131 13 CMIl tIC tIj_)ol.eLd

cil-c' StilHcc tiii 13! 1}3 ii 1 tn. c 'ci cii cl "'id\l-\ iinictiOli

COMPUTER

l-c I\ co II-11)] IC ncr.t Cd, \\ 11 11 ICCOll"C(Itic III (I 1,()!- .l

8

fetch, it can have as manv predictions as there are un-
completed instructions in the pipeline.
The major optimization problem in the design of a

BTB is the selection of the algorithm that predicts
whether or not the branch will be taken. How large the
BTB will or should be and how it should be organized
(e.g., set associative or hashed) are also issues. Holgate
and lbbett2' have studied the BTB design effectiveness
for the MU-5, which actually implements a branch target
buffer, roughly of the type described. Losq24 proposes
the use of the BTB, and Smith25 examines a number of
BTB designs using traces for the CDC Cyber 170 com-
puter. Results from these studies are similar to our own,
but here we consider three different machine architec-
tures (IBM 370, DEC PDP- 1, CDC 6400), and predic-
tion strategies are examined much more systematically.

Figure 3. Branch target buffer organization.

Methodology and data

There is now no statistically acceptable model to
characterize any aspect of program behavior (although
much research has been done in paging and memory
management).26,27 For the design and evaluation of
branch target buffers, we still need a model of when
branches occur, whether or not they will be taken, and
whether or not the branch target will change. Because no
existing model can now predict these things accurately,
our research is based on the thorough analysis and use
for trace-driven simulation of program address traces.

Data. We have 26 program address traces (see box at
right), grouped into six workloads. Four workloads are
for the IBM 370 architecture and consist of compiler ex-
ecutions (PL/l, Cobol, Fortran-H), business programs
(Cobol, PL/1), a scientific mix (Fortran), and supervisor
state set of traces (MVS operating system). Six traces
form the DEC PDP-I I workload, and six more make up
the CDC 6400 workload.

January 1984 9

From each program trace, we extracted the branch in-
structions, along with their targets, addresses, sequence
numbers, and operation codes. All analysis was based on
this extraction.
The large number of traces used in this research and

the grouping of them into workloads serves several pur-
poses. First, the large number of individual traces and
the use of several of them in each workload should give
representative behavior; no individual trace, no matter
how peculiar, can significantly throw off the overall
results. Conversely, the use of workloads, rather than a
grand average, shows the variation to be expected from
the different job mixes experienced at different computer
centers, on different machines, and at different times of
the day. Certain workloads are known to have different
instruction mixes; business programs use many more
storage-to-storage, or string, operations on the IBM 370
than scientific programs. Conversely, the scientific pro-
grams have far more floating point operations. If such
differences impact the efficiency of a branch target buf-
fer, our study will show these effects. Similarly, the use

of traces from three very different machine architectures
will indicate whether the results are sensitive to the in-
struction set architecture.

Some of our studies show results for various specific
machine instructions, and branch instructions for each
machine are given in the box below. Some studies are
limited to conditional branches only; the instructions
considered to be conditional branches are also listed.

Methodology. Trace-driven simulation is a technique
by which a trace is recorded of the operation of some
system. That trace is then used to drive a model of the
system that allows us to vary different parameters or fea-
tures of interest. If the variation does not affect the
validity of the trace, then the trace-driven simulation can
accurately predict the effect of changes in the system.
We use program address traces in two different ways.

First, we examine them and measure various features of
interest; for example, the frequency of taken and not
taken branches. We then use these measurements as one

COM PUTER10

basis from which we can formulate branch-buffering
strategies. The traces are then used to evaluate designs
for a branch target buffer.

Branch behavior

Before presenting actual measurements of branch
behavior, we need to consider what we can expect. There
will be several types of branches: loop-control branches,
which are usually taken and go backward; branches used
as part of IF/THEN/ELSE logical constructs, which
always go forward and may or may not have a consistent
behavior pattern; branches used for subroutine calling,
which will always be taken; branches used to load
registers, which are never taken; and branches used as
"no-ops," which are never taken. While for most of
these, we can predict likely behavior, the relative fre-
quency of each makes reasoning out overall average
behavior extremely difficult. Thus, we rely almost ex-
clusively on data analysis and empirically derived predic-
tion algorithms.

Taken/not taken and branch frequency by opcode. For
each trace, we show the overall probability of a branch
being taken or not taken and the ratio r of branch in-
structions to all instructions in the trace (Table 1). Two
features are important: first, branches are taken twice as
often as not; thus by just guessing that branches are
always taken, we are right 60 to 70 percent of the time.
(In Smith's study,25 the range over six traces was 57 to 99
percent, with an average of 76.7 percent.) Variation
among workloads is moderate, and for all workloads,
branches are taken most of the time.
The probability that a branch is of a specific operation

code is shown in Table 2 for each workload. For IBM 370
workloads, note the significant variation in the frequen-
cies of the various operation types.

Table 3 shows the probability that a branch is taken
for each operation code. Unconditional branches are
always either taken or not taken, but BALR is sometimes
used to set up the base registers, and so is not taken.
Those used for indexing are usually taken, but BCTR is
generally not taken because it is often used as a decre-
ment instruction.

Dynamic branch behavior. Not all branches are ex-
ecuted with the same frequency, so much of our ability
to predict branches relies on the fact that because some
branches are executed many times, we can make a good
guess as to what will happen next. Before examining this
approach further, we need to define static branch in-
structions and dynamic branch instructions.
The first type refers to the individual branch instruc-

tions found in a program. For a given program, the
number of these branches is fixed and can be counted by
looking at the program. The second type refers to the
branch instructions found in the trace of a program. A
static branch instruction can occur more than once as a
dynamic branch instruction, and every time a static
branch instruction is executed, a new dynamic branch is
formed.

In Figure 4, we show the probability distribution for
each workload for the number of times a static branch

Table 1.
Fraction of branches, taken T and not taken N and fraction of

branches overall r.

IBM IBM IBM IBM DEC CDC
CPL BUS SCI SUP PDP11 6400 AVERAGE

T 0.640 0.657 0.704 0.540 0.738 0.778 0.676
N 0.360 0.343 0.296 0.460 0.262 0.222 0.324
r 0.317 0.189 0.105 0.376 0.388 0.079 0.242

Table 2.
Frequency of branch types.

OP IBM IBM IBM IBM OP DEC OP CDC
CODE CPL BUS SCI SUP CODE PDPli CODE 6400
BR,B 0.222 0.243 0.254 0.138 JSR 0.111 RJ 0.049
BAL 0.056 0.036 0.013 0.036 SOB 0.008 JP 0.017
BALR 0.036 0.050 0.079 0.065 BGET 0.113 XJ 0.560
BCT 0.024 0.013 0.027 0.016 BVCS 0.030 EQ 0.157
BCTR 0.022 0.050 0.006 0.019 BHSL 0.031 NE 0.199
BXH 0.004 0.000 0.000 0.000 BNEO 0.278 GE 0.000
BXLE 0.032 0.000 0.188 0.003 RTS 0.074 LT 0.003
BC 0.544 0.521 0.318 0.674 JMP 0 .190 SYS 0.015
BCR 0.051 0.081 0.112 0.034 BR 0.162
EX 0.009 0.005 0.003 0.005 TRAP 0.002
SVC 0.000 0.001 0.000 0.001
LPSW 0.000 0.000 0.000 0.005
MC 0.000 0.000 0.000 0.005

Table 3.
Probabilities of branch taken by branch type
(blanks mean instruction is not in that trace).

OP IBM IBM IBM IBM OP DEC OP CDC
CODE CPL BUS SCI SUP CODE PDPIl CODE 6400
BR,B 1.000 1.000 1.000 1.000 JSR 1.000 RJ 1.000
BAL 1.000 1.000 1.000 1.000 SOB 0.448 JP 1.000
BALR 0.659 0.555 0.850 0.531 BGET 0.330 XJ 0.604
BCT 0.584 0.899 0.857 0.713 BVCS 0.155 EO 1.000
BCTR 0.007 0.173 0.000 0.207 BHSL 0.496 NE 1.000
BXH 0.404 BNEO 0.495 GE 0.848
BXLE 0.865 0.994 0.865 0.522 RTS 1.000 LT 0.000
BC 0.462 0.571 0.342 0.415 JMP 1.000 SYS 1.000
BCR 0.539 0.348 0.647 0.584 BR 1.000
EX 1.000 1.000 1.000 1.000 TRAP 1.000
SVC 1.000 1.000 1.000 1.000
LPSW 1.000
MC 1.000

Figure 4. Percentage of branch instructions executed N times for each
of six workloads.

January 1984 1 1

Figure 5. Percentage of branch instructions executed N times
weighted by N.

Figure 6. Sample sequences of taken and not taken branches
(0 = not taken, 1 = taken).

Figure 7. Distribution of the number of times that a conditional branch
has the same result.

occurs as a dynamic branch. Figure 5 shows the pro-
bability that a dynamic branch is due to a static branch
executed N times. The large bulk of dynamic branches
occur for frequently executed static branches; for exam-
ple, 23.4 percent of the static branches in the IBM/CPL
mix get executed only once, but they account for only 0.5
percent of the dynamic branches. On the other hand,
10.4 percent of the static branches executed over 200
times make up 48.2 percent of the dynamic branches.
Many of our predictions as to whether a branch will be

taken are contingent on the branch's past behavior
(taken/not taken). To illustrate such branch behavior,
Figure 6 shows some sequences of taken/not taken for a
number of branches. For many branches, there are long
sequences of either taken or not taken; it is less common
to see an alternation. We call such a sequence a run, or a
sequence of identical behavior (taken, not taken, taken
with a changed target) of a static branch as it gets ex-
ecuted many times. For example, the sequence of takens
T and not takens N, TTTTTNNTTTTNTNNN, consists
of run lengths of 5, 2, 4, 1, 1, etc. Figures 7 and 8 show
the distributions of run lengths for conditional branches
only and all branches, respectively. The same data are
shown weighted by the run length in Figures 9 and 10.
(That is, Figures 9 and 10 show the probability that a
given dynamic branch is an element of a run N branches
long.) As the figures show, most branches occur as parts
of long runs.

Branch clustering. We have described one method of
coping with the branch problem, called multiple instruc-
tion streams, which involved recognizing branches at the
instruction decode step of the pipeline, and then fetching
and decoding both the taken and not taken outcomes of
the branch. As noted, one difficulty with that solution
was that a large number of closely clustered branches
could occur, making it impossible to follow all 2k paths
possible from k branches. A measure of the size of k ap-
pears in Figures 11 and 12. The figures show the pro-
bability that in H sequential instructions (H= 10 and
H= 6, respectively), there are k branches. If the pipeline
is long enough (and 6 and 10 are typical numbers for
high-speed machines), then there is a significant prob-
ability that more than one branch is unresolved at any
one time.

Branch prediction

A number of the solutions to the branch problem at-
tempt to predict whether or not a branch will be taken.
The general problem can be stated as what is the value of
F(xl,x2,. . .), where F is the probability that a branch is
taken, and xl, x2,. .. are parameters on which Fmay be
reasonably conditioned. If F(xl,x2,. . .) > 0.5, then we
predict that a branch will occur; if less than 0.5 we
predict that it will not. (If the cost of commission errors
is not equal to that of omission errors, the best figure for
deciding to predict a branch may not be equal to 0.5. We
discuss this issue later.) Of particular interest is xl=
operaton code, and x2 = execution history of this bran-
ch. We can continue with other factors (for x3, x4, etc.)
such as other dynamic branches that precede the current

COMPUTER12

dynamic branch (and their execution behavior),28 other
dynamic instructions that precede the current dynamic
instruction, the source language of the program, and the
direction of the branch (e.g., forward/ back25). For ex-

ample, certain instruction sequences will generally in-
dicate a taken branch; others will almost always fall
through.
Any solution to the branch problem must be imple-

mented in hardware, since it is part of the pipeline and
must execute at machine cycle speeds. For that reason,

the complexity of practical schemes is very limited, and
we consider only predictions that depend solely on the
operation code F(xl) and those that depend only on the
history of the branch F(x2).
The other aspect of branch prediction concerns

knowledge of the target address, since delays are en-

countered even for a correctly predicted taken branch
when the target address is not immediately known.

Prediction based on operation code. In Tables 2 and 3,
we show the probability that a branch was of a specific
op code, and the probability that the branch with that op
code would be taken. These two tables can be easily com-
bined (Table 4) to yield the probability of whether or not
a branch will be taken given only the op code. Note that
for the IBM CPL mix, the prediction accuracy rises from
64 percent (assume all branches are taken) to 66.2 per-

cent (assume that only BR, B, BAL, BALR, BCT, BX-
LE, BCR, EX, and SVC are taken; all others never

taken). While this 2.2-percent improvement is helpful,
we shall see that it is considerably less than what can be
obtained by predictions based on branch history.
(Smith25 gives a range of accuracy for op-code-based
predictions of 65.7 to 99.4 percent, with a mean of 86.7
percent.)

Prediction based on branch history. Prediction based
on branch history uses the previous sequence of taken/
not taken for each branch to predict whether or not the
branch will be taken next time it occurs. The most
powerful predictor, of course, uses the entire history of
the branch to predict the next choice, but such a predic-
tor is infeasible because of the large possible number of
such past sequences. Consequently the problem becomes
for a given amount of history, what prediction accuracy
can be otained, and what is the most desirable amount of
history to retain, given all cost and performance trade-
offs? The basic data for this evaluation are presented in
Tables 5 and 6, where we show the observed probability
of all possible sequences of five taken/not taken events
(yl,y2,y3,y4,y5) for conditional branches and all
branches, respectively.

Table 4.
Probability of correct branch prediction given only op
code, and assuming branch is always either taken or

not taken, based on op code.

Figure 8. Distribution of the number of times that any type branch has
the same result.

Figure 9. Distribution of the number of times that a conditional branch
has the same result, weighted by run length.

Figure 10. Distribution of the number of times that any type branch
has the same result, weighted by run length.

January 1984

IBM IBM IBM IBM DEC CDC
CPL BUS SCI SUP PDP1 1 6400
0.662 0.692 0.710 0.552 0.798 0.778

13

The data in Tables 5 and 6 may be used for prediction
in the following manner: whenever the probability
F(yl,y2,y3,y4,T) is greater than F(yl,y2,y3,y4,N),
the branch should be predicted as taken and when less
than, the prediction should not be taken (where
yl,y2,y3,y4 is the sequence of the four previous dy-
namic occurrences of this static branch). Predictions
based on the previous three events, F(y2,y3,y4, T)
and F(y2,y3,y4,N), can be computed by noting that
F(y2,y3,y4,N) = F(T,y2,y3,y4,N) + F(N,y2,y3,y4,N).
Predictions based on the previous two, one, or zero
branches can be similarly derived. Table 7 shows the ac-
curacy of such predictions, where each is based only on
the values of F(yi) for that workload. (For one previous
branch, Smith's success rate24 was from 76.2 to 98.9 per-
cent with a mean of 90.4 percent.)

We can create a composite predictive strategy; that is,
a prediction based on F(yi), where F(yi) is computed
over all six workloads used, rather than for just the
workload in question. This strategy is much more valid,
since varying the predictive strategy on a real computer is
not likely to be cost-effective (depending on the program
running). In any case, as Table 8 shows, the predictive
accuracy is almost identical to that shown in Table 7.
A number of interesting observations can be made

from Tables 7 and 8. First, the predictive accuracy ap-
proaches very closely to its maximum with one, two, or
three preceding branches used for prediction. Increasing
the amount of history to four or five branches does not
seem to add accuracy.

Second, the predictive accuracy for as few as two
preceding branches is from 83.4 to 97.5 percent, which is
much higher than the accuracy using only the branch
type, and no branch history (Table 4). Finally, the effec-
tiveness of prediction varies significantly among the
workloads. Most striking is the variation of 83.9 to 97
percent between the IBM/SUP and the IBM/BUS work-
loads, both of which are for the same architecture. [We
believe that the lower prediction success rate for the
IBM/SUP workload is due to the low probability that a
branch is executed repeatedly (see Figure 4). This low

Table 5.
Distribution of five consecutive executions

(conditional branches).

Figure 11. Probability of N or fewer branches in 10 consecutive in-
structions.

Figure 12. Probability of N or fewer branches in six consecutive in-
structions.

HISTORY
NNNNN
NNNNT
NNNTN
NNNTT
NNTNN
NNTNT
NNTTN
NNTTT
NTNNN
NTNNT
NTNTN
NTNTT
NTTNN
NTTNT
NTTTN
NTTTT
TNNNN
TNNNT
TNNTN
TNNTT
TNTNN
TNTNT
TNTTN
TNTTT
TTNNN
TTNNT
TTNTN
TTNTT
TTTNN
TTTNT
TTTTN
TTTTT
NNNNN

+
TTTTT

IBM
CPL
0.407
0.013
0.012
0.004
0.013
0.003
0.002
0.004
0.018
0.005
0.029
0.008
0.003
0.003
0.004
0.015
0.018
0.003
0.004
0.003
0.011
0.017
0 003
0.015
0.003
0.003
0.003
0.011
0.004
0.011
0.011
0.338

IBM
BUS
0.414
0.006
0.004
0.003
0.005
0.001
0.001
0.002
0 008
0.002
0.017
0.005
0.001
0.001
0.001
0.013
0.009
0.002
0.002
0.001
0.006
0.010
0.001
0.012
0.002
0.001
0.000
0.009
0.002
0.008
0.009
0 442

IBM
ScI

0.437
0.014
0.014
0.005
0.019
0 005
0.004
0.004
0.019
0.010
0.026
0.006
0.004
0.014
0.002
0.020
0.017
0.005
0.010
0.003
0.010
0.016
0.014
0.018
0 .004
0.004
0.003
0.027
0.004
0.016
0.018
0 228

IBM
SUP
0.422
0.005
0.005
0.003
0.005
0.003
0.002
0.004
0.021
0.004
0.005
0.026
0 003
0.003
0.002
0.020
0.034
0.003
0.003
0.003
0.029
0.021
0.004
0.021
0.002
0.003
0.002
0.004
0 002
0.003
0 004
0.341

DEC
PDON1
0.491
0o011
0.012
0.003
0.012
0.001
0.001
0.003
0.014
0.002
0.005
0.004
0.001
0.003
0.007
0.012
0.012
0.004
0.001
0.001
0.003
0.007
0.002
0.016
0.001
0.001
0.005
0.014
0.002
0.017
0.012
0.320

CDC
6400
0.170
0.008
0.006
0.002
0.008
0.003
0.003
0.003
0.006
0.006
0.025
0.002
0.003
0.044
0.003
0.020
0.008
0.001
0.005
0.003
0.003
0.025
0.044
0.019
0.003
0.002
0.002
0.061
0.003
0 019
0.019
0.471

0.745 0 856 0.665 0.763 0.811 0.641

COMPUTER14

Table 6. Table 7.
Distribution of five consecutive executions (all types). Percentage of correct guesses, using n past branches

and conditional probabilities drawn from only given
trace.

IBM IBM IBM IBM DEC CDC trace.
HISTORY CPL BUS SCI SUP PDP11 6400 IBM IBM IBM IBM DEC CDC
NNNNN 0.275 0.310 0.196 0.378 0.230 0.129 n CPL BUS SCI SUP POPN1 6400
NNNNT 0.008 0.004 0.005 0.004 0.004 0.007 0 64.1 64.4 70.4 54.0 73.8 77.8
NNNTN 0.008 0.003 0.005 0.004 0.004 0.006 1 91.9 95.2 86.6 79.7 96.5 82.3
NNNTT 0.003 0.002 0.002 0.003 0.001 0.002 2 93.3 96.5 90.8 83.4 97.5 90.6
NNTNN 0.008 0.003 0.008 0.003 0.005 0.007 3 93.7 96.7 91.2 83.5 97.7 93.5
NNTNT 0.002 0.001 0.002 0.004 0.000 0.003 4 94.5 97.0 92.0 83.7 98.1 95.3
NNTTN 0.002 0.015 0.002 0.002 0.000 0.003 5 94.7 97.1 92.2 83.9 98.2 95.7
NNTTT 0.003 0.002 0.002 0.002 0.001 0.003
NTNNN 0.012 0.006 0.008 0.017 0.005 0.005
NTNNT 0.003 0.001 0.005 0.003 0.001 0.004 force, and each edge shows the transition (mapping E)
NTNTN 0.027 0.020 0.017 0.005 0.005 0 048 '
NTNTT 0 009 0.008 0.007 0.036 0.002 01003 from state to state dependig on whether the branch was
NTTNN 0.001 0.000 0.002 0.002 0.000 0.003 taken or not taken.
NTTNT 0.002 0.001 0.012 0 002 0.001 0.040 We can suggest mappings E and functions G other
NTTTN 0.002 0.001 0.002 0.002 0.001 0.002 than those based on the last n executions of the branch.

TNNTNTNT 0.011 0.006 0.007 0.028 0.004 0.007 Figure 14, for example shows an algorithm in which two
TNNNT 0.002 0.001 0.002 0.003 0.001 0.001 errors are required to change the prediction. That is,
TNNTN 0.003 0.001 0.005 0.003 0.001 0.004 when the current prediction is N and the last two

TNNTT 0.001 0.001 0.002 0.003 0.000 0.003
TNTNN 0.007 0.005 0.005 0.024 0 001 0.003
TNTNT 0.016 0.012 0.013 0 028 0.005 0 046
TNTTN 0.002 0.001 0 012 0.003 0.001 0 0404'O
TNTTT 0.014 0 013 0.030 0.029 0.005 0.018
TTNNN 0.002 0.002 0.002 0 002 0.001 0.003
TTNNT 0.001 0.000 0.002 0.002 0.001 0.002 T
TTNTN 0.002 0.001 0.002 0.002 0.001 0.001
TTNTT 0.008 0.007 0.036 0.004 0.004 0.055
TTTNN 0.002 0.001 0.002 0.002 0.001 0.002
TTTNT 0.008 0 007 0.027 0.003 0.004 0.016
TTTTN 0.008 0.007 0 027 0.003 0.004 0.017
TTTTT 0.534 0.561 0.521 0.384 0.702 0.500
NNNNN TN

TTTTT 0.809 0.871 0.717 0.762 0.932 0.629 T _

probability is to be expected in supervisor code, in which Figure 13. State diagram for branch predictor. The sta
loops are relatively less frequent.] name (top line) is the history of the last two dynamic oc-

currences of this branch followed by the prediction (bot-
Prediction based on nonuniform history retention. tom line). TT means both were taken, and T implies

Tables 7 and 8 give the effectiveness of branch prediction predict taken. The label on each arrow is the result of the

when prediction is based on exactly the n preceding ex- branch.

ecutions of the branch in question, and whether that
branch was taken or not taken. These n preceding execu-

tions may be remembered in the branch target buffer
with n bits, those n bits representing the 2n possible se-

quences of taken/not taken.
Given that n bits are available to use in predicting the

next branch, the bits need not be allocated to show the
past n executions, but can be used to record a state that
does not map into the precise history. That is, given a

state S(i) (for the branch in question) at time i, we have a
function G(S(i)) that yields the prediction Tor N, and a

mapping E(S(i),T/N) - S(i+ 1) that maps the current

state S(i) and whether the branch is actually taken into

the next state S(i+ 1). Thus, the prediction algorithm
can be specified by giving n (2n states), the function G
and the mapping E. For example, Figure 13 shows the
algorithm that uses the past two executions to predict the

Figure 14. State diagram for branch predictor. The namo
next; the effectiveness of this method is shown in Table 8 of the state gives the prediction. For t and t?, predictior
in the line labeled "2." In Figure 13, the states are label- is taken. For n and n?, prediction is not taken. The labe
ed with the their history (as a name) and the prediction in on the arrow is the result of the branch.

January 1984
15

1
1

Table 8.
Percentage of correct guesses using n past
branches and conditional probabilities drawn

from average of all traces.

n

0

2
3
4
5

IBM
CPL
64.1
91.9
93.3
93.7
94.5
94.7

IBM
BUS
64.4
95.2
96.5
96.6
96.8
97.0

IBM
SCI
70.4
86.6
90.8
91.0
91.8
92.0

IBM
SUP
54.0
79.7
83.4
83.5
83.7
83.9

DEC
PDP11
73.8
96.5
97.5
97.7
98.1
98.2

CDC
6400
77.8
82.3
90.2
93.4
94.8
95.1

Figure 15. State diagram for branch predictor. The name
of the state gives the prediction. The label on the arrow is
the result of the branch.

branches were N, then two Ts are required to change the
prediction to T. The idea here is that a loop exit will not
serve to change the prediction. We note, however, that
the sequence NTNTNTNT..., when started in the
wrong state (either n? or t?) will yield 100 percent wrong
predictions; when started in either of the other two
states, the predictions will be 50 percent wrong.

In another algorithm, proposed for the S-l,'9 (Figure
15), two wrong guesses are again required to change the
prediction, but two are also required to return to the
previous prediction. (In the previous algorithm we could
return to the previous prediction in one step after two er-
rors.) The sequence NNTTNNTTNNTT... can cause
every prediction to be incorrect.

Close examination of both Figures 14 and 15 shows
that the states indicated do not correspond exactly with
the previous two branches. For example, state n in Figure
14 implies a history of NN, whereas state n? implies
history ofNNT or TNN.
The success of the algorithms represented in Figures 14

and 15 is shown in Table 9. Comparing the two, we see
that their results are almost identical. For further com-
parison, Table 8's "2" line shows that in most cases (five
workloads), the algorithms in Figures 14 and 15 are only
slightly better. For the IBM Supervisor workload, the
earlier results are three percent better, probably because
supervisor code uses branches much less frequently for
loop control than do user programs.

We can consider all possible functions G and mappings
E for n bits of state to derive the optimal algorithm, but
we have not done so, since the results in Tables 8 and 9
and the comparison between them suggest that such an
exercise would yield very little, if any, improvement.

Branch target changes. As noted earlier, the branch
target buffer contains a number of entries, each of which
consists of a branch address, state information, and a
target address. The branch target can be obtained only
by computing it directly from the instruction or by
remembering it from the past execution and assuming
that it will be the same. Since the purpose of the BTB is
to predict the target immediately, the previous target
must be remembered. While target changes are likely to
be infrequent, they will sometimes occur, particularly if
the source (higher level language program) contains a
computed GOTO or a case statement. Execute instruc-
tions, such as those from the IBM 370 architecture, also
generally change targets.
Tne possibility of branch target changes implies that

when a branch is resolved and found to be taken, the
target address must be compared with the target
predicted in the BTB. If it is different, the BTB entry
must be changed. Also, if the BTB had predicted a
branch, then the pipeline must be flushed, and the cor-
rect stream of instructions fetched, just as if the BTB had
predicted that the branch would not occur. (With this re-
quirement, perhaps a branch whose target has been
found to change previously should not be used to predict
a branch. We believe, however, that predicting a branch
is better, if the cost of an incorrect prediction is the same
as the cost of an incorrect fall-through-primarily
because a fall-through is very unlikely, whereas the target
need not always change.)

Table 10 shows the fraction of all dynamic branches
executed for which a branch is taken whose target ad-
dress differs from that of its previous target. Some of

Table 9.
Prediction success of state diagrams

in Figures 14 and 15.

WORKLOAD FIGURE 14. FIGURE 15
IBM/CPL 93.8 93.8
IBM/BUS 96.2 96.2
IBM/SCI 91.3 91.3
IBM/SUP 80.2 80.2
PDP-l 97.8 97.8
CDC6400 86.4 89.1

Table 10.
Fraction of branch targets found to have changed from

previous execution of that branch.

PROBABILITY OF
WORKLOAD TARGET CHANGE (%)
IBM/CPL 4.2
IBM/BUS 2.1
IBM/SCI 4.4
IBM/SUP 1.4
PDPll 12
CDC6400 2.9

16 COMPUTER

these target changes will cause predictionis that were
otherwise correct (predict branch) to be incorrect. The
other cases (predict branch, but none occurs; predict no
branch, but branch occurs; and predict no branch, and
none occurs) are not affected.

WRITEs into the instruction stream. The branch
target butfer is accessed using the address of a previously
executed branch. If there has been a WRITE into the in-
struction stream, such that the bits at the given address
no longer specify a branch, then the BIB will not oper-
ate correctly. We can deal with this problem in two ways.
First, and more correct, is that the instruction in ques-
tion, identified by the BTB, can be tagged as it moves
down the pipeline with a bit specifying "branch." If in
the instructioni-decode stage, the instruction is found not
to be a branch, then the pipeline can be flushed and re-
loaded, and the BTB can either be flushed or ju.st that
entry caln be deleted. The alternative is to ignore the
possibilitv of a WRITE into the instructioni stream on the
basis that the machine architecture torbids modifving in-
structionis, and correct operation is not guaranteed. The
latter solution is not acceptable for older architectures,
for which existing programs do modify the instruction
st ream.

Extensions and alternatives. We have defined a general
mechanism for predicting branches and shown some
results for the more important cases. Some cases exist
that we have not considered, and some improvements
have been suggested.

Pomerenle and Rechtschaffen2l suggested that a
machine be built so that both the taken and not taken
directions can be followed (as in multiple instructioni
streams). Then, if a change in locality is detected, for ex-
ample, when there are instruction misses in the CPU
cache, the multple instruction stream mechanism should
be uLsed instead of the BTB predictions. More generallv,
such a scheme can be used whenever the BTB fails to
contain the desired entry.

Smith proposes a strategy (strategy number 3) in which
all backward branches are predicted to be takeni as loop
closures and all forward branches are predicted to be not
taken, > but the performance is poor. Smith reports on
the effectiveness of a number of his other "strategies,"
but in many cases, the strategies combine the prediction
algorithm with implementation issues such as the size of
the BTB or its addressing. It is thus difficult to compare
most of his results with ours. Another of his ideas is to
keep a table of recently u.sed not taken branch instruc-
tions, but this technique, of course, fails to retain branch
tragets for successuLl branches, and so can be of only
limited use ftor 370-like architectures. For CDC and Crav
architecturecs,3' however, the branch target address need
not be in the branch target buffer. In those machines, the
branch target address can be computed from the instruc-
tion itself well before the instruction branch conidition is
resolved.

Some other ideas Smith25 has are to keep a taken/not
taken bit in the cache, to use a hashed BTB with a one-
bit predictor, and to u.se the same design but with a two-
bit predictor. Smith also notes that the branch target

buffer does not actually need to hold the address of the
branch.3' The buffer could, for example, have a direct
mapping organization (using either bit selection or
hashing2 with a large number of sets. Thus, if a branch
hashes into a specific set, the prediction contained
therein would be assumed to be for that branch; if
because of mapping conflicts, the branch prediction
recorded was for the wrong branch, the penalty would at
most be a wrong prediction.
An interesting use of the branch target buffer is

described bv Driscoll et al.32 An address-generate in-
terlock in a pipeline is a logical dependency between the
address calculation function for operand addressing and
the register update function in the execution unit. This
AGI can delay the processing of a branch instruction
becau.se of the need to calculate the target address. Since
the BTB predicts the target address, this interlock can be
suppressed until the branch is resolved, and the target
address can then be calculated only if necessary. An un-
necessarv pipeline interlock is thus avoided most of the
time.
An additional use of the branch target buffer or simi-

lar buffer is to speed up access to indirectly addressed
operands or addresses. Indirect addressing is a major
pipeline blocker, since indirect addressing requires a
storage delay for each indirect step. If all fetches
(operand, branch target) that could be indirect either by
tag in instruction or by tag in target are matched against
an "indirect buffer," the ultimate target of an indirect
address could be fetched in one step. The BTB could
serve double duty here, or a separate buffer could be
used. We have not addressed this extension, since none
of the three architectures for which we have traces per-
mits indirect addressing.

Branch target buffer implementation

Performance costs and optimal prediction. Thus far,
we have assumed that the branch target buffer impacts
performance in the following way: A correct prediction
bv the BTB incurs no lost cycles (fall-through if no
branch predicted or correct branch and target predic-
tion), and all incorrect predictions (predict branch, and
none occurs or predict fall-through, and branch occurs)
re.sult in the same number of lost machine cycles. In a
real machine, neither of these assumptions is necessarily
true.

Specificallv, a prediction of a taken branch could
always cost a small number of machine cycles because a
taken branch is out of sequence, and storage access time
(cache or main memory) may be long enough that the
target cannot be fetched before the instruction decode
stage of the pipe is ready for it. In Figure 16, we assume
that j cycles are lost for every predicted branch.

The cost of a branch predicted to be taken and then
not taken may be less than the cost of a branch not ex-
pected to be taken, but which is actually taken. This dif-
ference can occur because the fall-through sequence of
instructions may be already available from a sequential
fetch for more than one instruction, and thus when the
branch is resolved, the correct target (the fall-through in-

January 1984 17

Figure 16. Diagram showing time penalties in lost
machine cycles for correctly and incorrectly predicted
branches.

struction) may already be on hand. In Figure 16, we
assume that the cost of an incorrect positive (predict
taken) prediction is k cycles and an incorrect negative
(not taken) prediction costs m cycles.
The four events of interest are predict no branch, and

no branch occurs; predict no branch, and branch occurs;
predict branch, and none occurs; and predict branch
correctly. (We omit the target change case here for
simplicity.) The respective costs for these events are
respectively 0, m, k, and j. Previously, we assumed that
in = k and j = 0. In that case, the optimal prediction is to
maximize the probability of being right, i.e., predicting
whether the branch occurs or not. In the latter, more
complex case, the optimal prediction is the one that has
the average minimum cost. Thus, the optimal strategy
does not have to reflect the highest prediction accuracy.

Because in, k, and j are very implementation depen-
dent, we have not developed strategies for cost-based
performance predictions. Such strategies can easily (but
tediously) be generated, given the costs m, k, andj, from
Tables 5 and 6. For each sequence of preceding takens/
not takens {yi}, there is some probability p that the
branch is taken and probability I - p that it is not. If we
decide to predict that the branch is taken, the cost is
(I - p)*k + p*j. If we decide to predict that the branch

Figure 17. Hit ratio of the branch target buffer as function of the
number of entries.

is not taken, the cost is p*m. The correct prediction is
the one with the lower expected cost.

Branch target buffer size and hit ratio. The branch
target buffer, like the CPU cache or the translation look-
aside buffer, is a small, high-speed memory, and because
of both cost and performance must be of limited size. In
our analysis thus far, we have always assumed that the
BTB had no boundaries and could hold all previously ex-
ecuted branches, which of course, cannot be true. Now
we will examine the effect of a BTB with a finite size.
The hit ratio of the BTB is the probability that a

branch is found to be in the BTB at the time it is fetched.
As such, the hit ratio depends on the replacement
algorithm and the BTB fetch algorithm. The former
determines which item in the BTB to replace when a new
entry is to be placed into the BTB. The latter determines
when to place entries in the BTB. In particular, it may be
better not to enter branches in the BTB if they are not
taken, given that the BTB now has a finite size.
We have used a "fetch-all" algorithm here; that is,

whenever a branch is recognized, it is entered in the BTB
if it is not already there. For replacement, we use the
global LRU algorithm, which removes the least recently
used (executed) branch in the BTB. (The replacement
algorithm could be modified to reflect the fetch
algorithm. For example, if the fetch algorithm does not
fetch a not taken branch, then when a branch is already
in the BTB and is not taken, its replacement status is not
altered. That is, if replacement is LRU, then the branch
entry is not moved to the top of the LRU stack. Alter-
natively, to save space, a not taken branch could be
deleted from the buffer entirely.)
The hit ratios for various BTB sizes, given fetch-all

and global LRU replacement algorithms are shown for
each workload in Figure 17. As the figure shows, the hit
ratio varies widely. For example, for a 256-entry BTB,
the hit ratio varies from a low of 61.5 percent (for the
IBM Supervisor workload) to a high of 99.7 percent for
the CDC 6400 programs. These results are qualitatively
similar to the relative cache hit ratios2 for the various
types of programs, as we would expect. (Widdoes'9
reports that 16 to 32 entries in a BTB yield over 50 per-
cent misses for S-l traces.)
The branch target buffer is similar in cost and perfor-

mance constraints to a translation look-aside buffer, or
TLB, and the range of feasible sizes should be similar.
Thus, the TLB sizes for the following machines are com-
parable: IBM 3033 (64), Amdahl 470V/6 (128), and Am-
dahl 470V/7 (256).
A major effect of the finite-size BTB is that it now has

fewer advantages over the other "branch problem" solu-
tions discussed earlier. For example, the taken/not taken
bit stored in the cache will be more frequently available,
if the cache is large, than the BTB entry. Although the
taken/not taken bit method is less effective in improving
performance, because the branch target address is not
immediately available, the higher hit ratio may be suffi-
cient to compensate.

Buffer addressing and organization. The branch target
buffer is accessed associatively; that is, the address of the

COMPUTER18

insti-nction t'etch is matchedc with the instructioni address
field.s in thc 13TB. If they match, the appropriate predic-
tion is Imladc. Associative memories are slow and expen-
.sise if implemenicted in other than VILSI, so it is not
alwavs f'easible to make the BTB fullv associative. The
two reasonable choices are to make it set associative 4 or
hashed as is done f'or most TI 3Bs.2 In the former case,
some middle hits of' the instructioni address are usecd to
select a set, anid the remaiining bits are used f'or the asso-
ciative match within the set. The replacemenit is within
the set. Hashing is usually combinecd with set associative
replacemeint as follows. The addrcss of the instrtuctioin is
hashed,' and a set of' elemenits is sclectcd. The scarch is
then associatise within this set (the set size may bc oInC),
and replacement is also within the set. Since A. Smith's
experiments2 showecd the two methods to bc abouLt cqual-
lN effective, wc select the standard set associative mapp-
ing as simpler, chcaper, and f'astcr. (.J. Smith uses
hashing as onc ot' his stratcgics.2

Table II shows the cfftect of' the set sizc is shown for
the IBM/CPI mix. (The eftf'ects of other mixes are
presented els.exhere.') A. Smith shows that set sizes ot'
t'our or eight are stfi't'icientlv large and closely approach
the hit ratio of' the fullk associative dcesiln .2 4

menit to limit the feasible degree of' comuplexitv for the
BT13. We have therefore nai-rowed the range of alter-
natixes conlsidered to those that are sufficiently simple
and inexpensive to implement. Further, we have looked
at the efftect ot' BTB size and organization for the same
reasoni. Anyone proposing either to design a BTB or to
studcl B Bs f'urther should keep innmincd these important
conistrainits.

MU-5 implementation and results. The MU-5 com-
ptuter 55stCeIlm ses a branch target buf'fer xvhose ef'fee-
tiVeness is discusscd by Holgate and Ibbett. The BTB
retainS LIp to eight previously taken branches and their
targets. Onlv branches with fixed (invariant) targets are
placed in the BTB.
The effectixeness of the MU-5 BTB was studied using

a hardware monitor; mcasuremuents were made f'or a mix
of compilations and eCxecutions for both Fortran and
Alg,ol. Brinches constitLitC 14 aiid 12.5 percent of' the in-
structions f'rom Algol and Fortran exeCuLtion.s, respec-
tixelv. The BTB correctly predicts from 40 (Algol con-
pilationi) to 65 percent (Algol execrition) of' the coi-rcct
scquecinces aftei a branch (inCluding fall-throughs), as
comparedxwith 15 to 25 percenit without the BTB.

'[he effect of multiprogramming. NMrUltiprograrnming is
imiipoi-tauit to both the clesign anrdl pcrf'oimance of' the
branch target bIft't'Ce. Whenex er the arclress space in coni-
tiol of' the comprirUteir changes, the association betxeen

i rtual memory adderiesses aucil mcnieors coiitents changes.
(Since virtual acldi-esses are the ones rvenerated bs the
program, the BTB mrist be accessed rising virtual acl-
clresses. Otherx isc all 13T13 accesses ourlcd req rire
translation fiist.) Thus, the BTB shoulrl be prUrged xhen
the arldiess spacc changces; othersise incorrect mathhcs
xx ill oCecir as xw ill incorrect predictions. Fach srch prediC-
tion will have to be correctecl, ancl since mans incorrect
positise predictionis will takc placc for noni-branches, the
nrmnbci of ci-iors \'ill bc high anid the pci-f'ormiianicc cost
snilficanit.
The efe''cct of' purging the 31-3B, or equiialently, in cor-

recting it entiv bv entrv, is that the BTB xill Usriallv con-
tam fai f'exer 5alidl entries thani our previons discrissions
anid simnitlations suggest. As a worst-case examplc, con-
sicler the data in Table 12. The tablc comparcs the f'rac-
tion ot' correct predictions using an infinite BTB with
those from an infinitely large BTB that is flushed every
1000 inStlniCtioIns. As the table shows, these t'requent
tlfrshes signlificantlv impact performancc. Wc believe,
howesxe, that adclress space switches will occrir at intcr-
vals closset to 3000 to 25,000 insti nCtions than to 1000.
Therefoic, tlC 13TB tLirshcs max, havc less of an eft'ect on
the mliss ratio than x iIll the f'inite sizc ot' the BTB.

11' the B3T13 is to be tfirshecl x hen a task sxitch occrirs,
then the task sw itch mnIst be detccterl. ILirther, somc
time^ max be lost as thc tfiish takes place. Snith rliscrIssCs
fast mict hlocts t'or finishing- TI s3s.-

Restrictions on logic complexity. The bianich target

bit't'cr, as nioted carlici-, is closely associated wxith the
CPU pipceliie anid mrist thle-eforc t'friCtion scry quickly.
Cost aned sizc Iimitaitionis combillc xith thc speccd rcqrlirc-

S-1 trace experiments. Some branch target buLf'f'er ex-
perimiients on S-1 traces have beeni reportecd.' SuCCess
iates are from '91 to 95 percenit with onc- to fi\e-bit
predictors, uLsing the method showxn in FiguLrc 15. The ef-
f'cctiseness of' this scheme varies from worse than the
onc-bit predictor to almost as good as the f'our-bit
preclictor. Thcsc cxperiments wcrce run on txwo traces ot'
about 100,000 instructions.

Table 11.
Branch target buffer hit ratios (IBM/CPL mix).

BUFFER
S IZE

2
4
8

16
32
64
128
256
512
1 K
2K
4K

SET SIZE

1 2 3 4 8 16 32 64
0.031
0.057
0.084
0.161
0.258
0.353
0.407
0.562
0.678
0.784
0.864
0.917
0.946

0.075
0.124
0.174
0.267
0.359
0.470
0.602
0.725
0.835
0.919
0.961
0.976

0.185
0.228
0. 271
0.355
0.475
0.617
0.751
0.865
0.944
0.974
0.981

0.298
0.333
0.369
0.499
0.623
0.759
0.879
0.956
0.979
0.981

0.369
0.441
0.513
0.623
0.765
0.886
0.961
0.981
0.981

0.514
0.570
0.626
0.768
0.886
0.964
0.981
0.981

0.634
0.702
0.770
0.880
0.965
0.981
0.981

0.769
0.840
0.911
0.966
0.981
0.981

128 256

0.888
0.952
0.966
0.981
0.981

Table 12.
Comparative percentages of correct guesses

in a multiprogramming environment.

No Flush

Flush Every
1000 Instructions

IBM IBM IBM IBM DEC CDC
CPL BUS SCI SUP PDPl l 6400
93.2 95.9 89.7 80.0 97.4 85.5

79.9 83.3 74.9 86.3 68.9

January 1984 19

Use for tracing. In some computers, circular buffers
are maintained of the last n instructions or branches ex-
ecuted, and their contents are useful in debugging both
hardware and software. The branch target buffer can be
combined in function with the circular branch buffer.36

Overall BTB effectiveness

The reason for building a branch target buffer is to im-
prove CPU performance. Thus, the results on correct
predictions and hit ratios must be integrated with the
costs of hits and misses and correct and incorrect predic-
tions to get an overall estimate of performance impact.

For example, in the IBM/CPL mix, we can predict the
branch path with an accuracy of 93.8 percent, using the
predictor depicted in Figure 14. A hit ratio of 86.5 per-
cent is obtained with a BTB consisting of 128 sets of four
entries each. Up to 4.2 percent of our predictions will be
incorrect due to target changes, giving an overall
minimum prediction accuracy of (93.8-4.2) 0.87 = 78
percent.

Prediction accuracy can be used to estimate the per-
formance impact by considering a real machine. We used
the Amdahl 470V/6,'4 which has a machine cycle time of
32.5 nsec and runs at about four MIPS.37 Excluding
memory access delays, five MIPS is closer (and the figure

we used) and yields a mean of six cycles per instruction.
Each branch taken causes a delay of four machine cycles.
If the branches are 30 percent of the instructions, and 65
percent of the branches are taken. Excluding the branch
penalty, the mean execution time t for an instruction
would be 6 - (0.3)(0.65)(4) = 5.22 cycles. Branch predic-
tion using the BTB would then result in a mean execution
time of 5.22 + (0.3)(I -0.78)(4) = 5.48 machine cycles.
Defining performance as the rate of instruction execu-
tion gives us a performance improvement of 9.5 percent.

This computation, using the same basic figures, has
been replicated, varying each parameter of interest, one
case per table, and the results appear in Figure 18. The
figure shows (left to right, top to bottom) the mean in-
struction time for different basic instruction execution
times, the mean instruction time for different time
penalties when the wrong stream is processed after an
unresolved branch, and the mean instruction time for
different hit ratios in the BTB with basic instruction
times of 5.22 and 2.2 cycles.

Figure 18a shows that the BTB is most effective when
the cost of an incorrect guess is large relative to the mean
instruction time. That result is confirmed in Figure 18c in
which the other parameter of that pair is varied. Figure
18b shows that the hit ratio to the BTB is important and
rises in importance, as seen in Figure 18d, when the basic
instruction time is short.

Figure 18. Mean instruction time in machine cycles as a function of variations in the basic instruction time (a), the in-
correct guess penalty (c), and the probability of a branch target buffer hit (b), (d).

20 COMPUTER

Taken branches have long been one of the major
obstacles to high efficiency in a pipelined computer
system. A great deal of effort has been invested in over-
coming this problem, either by facilitating the access to
instructions (loop buffers, target prefetch) or bv directly
attacking the branch problem (multiple instruction
streams, delayed branch, etc.). We believe that the
branch target buffer is the most effective wav to
minimize branch penalties.
Our study of the BTB has been based on a close ex-

amination of instruction traces and analysis of their
behavior. We have developed a general prediction
strategy, based on branch history and op code, and have
measured the effectiveness of the important variants of
this predictor. Our reSLults shosv that two bits are Suffi-
cient to retain the necessar-v state information for effec-
tive prediction. We also found that on the order of 256
enltries in the BTB are required for some workloads and
represent a good design target for a large, high-
performance machine.
We have also considered various implementation

issues, such as the design of the BTB addressing (set
associatise), the effect of multiprogramming on the hit
ratio, the need to flush the BTB when the address space
changes, and the problems of branch target changes and
WRITEs into the instruction stream.
The use of six xvorkloads, taken from three machines,

gives us reason to believe our re.sults are representative of
the those to be generallv expected, and we believe our
xork has direct application to hiph-speed computer
system design. A number of extensions to the basic BTB
include the use of the BTB or another similar buffer to
axoid penalties from indirect addressing. Improvements
in CPU performance of from 5 to 20 percent can be ex-
pected shen comparing a BTB design to a similar CPU
de.sign without a BTB. U

Acknowledgments

Partial support for this research was prosided by the
National Science Foundation under grants MCS77-28429
and MCS-8202591 and bv the Department of Energy
tinder contract DE-AC03-76SF00515 to the Stanford
l inear Accelerator Center.
The four IBM/370 program address trace workloads

xere created at Amdahl Corporation, and much of the
analvsis presented wxas also done xx'hile J. Lee was
emploved at Amdahl. We thank Amdahl and W. Hard-
ing for help and cooperation.

References

1. C. V. Ramamoorth\ and H. F. Ii, "Pipelinc Architec-
ture," Comnputing Surve.'s, Vol. 9, No. 1, Mar. 1977, pp.
61-102.

2. A. J. Smith, "Cache Memories," Computinn Survvecs,
Vol. 14, No. 3, Sept., 1982, pp. 473-530.

3. STAR-100 Hardware Reference Manuial 60256000, Control
Data Corporation, Arden Hills, Minn., 1975.

4. J. E. Thornton, "Parallel Operation in the Control Data
6600," AFIPS Conf. Proc., Vol. 26, part 1, 1964 FJCC,
pp. 33-40.

5. Control Data 7600 Hardware Referen(e Manual 60367200,
Control Data, Arden Hills, Minn., 1975.

6. R. M. Russell, "The Crav-1 Computer System," CotII.
ACM, Vol. 21, No. 1, Jan. 1978, pp. 63-72.

7. 1.. C. Garcia and T. Huvnh, "Storage Fetch Contention
ReduCtion bv Usine Instruction Branch Prediction," IBM
Technical Discloslure Biull., Vol. 23, No. 6, 1980, pp.
2404-2405.

8. F. M. Risemain and C. C. Foster, "The Inhibition of
Potenitial Parallelism by Conditional Jumps," IEEE Trans.
Conputers, Vol. C-21, No. 12, D)ec. 1972, pp. 1405- 1411.

9. IBM Vlaintenan(e Library Sistea7i 370 Model 168 Theorr
of OperationlDiagramis Mantial, Vol. 2, 1973, IBMI,
Pouthkeepsie, N.Y.

10. IBM Maintenance I ibrarv 3033 Proces.sor Comiplev Theory?
Of OperationlDiagratn.s Manual, Vols. 1-3, Jan. 1978,
IB\1, Poughkecpsie, N.Y.

11. .1. F. HLughes, "Branch on Condition Decodinig With In-
structioni Queues Fmpts,'" IBM Technical Disclo.sure Bull.,
Vol. 24, No. 4, 1981, pp. 1857-1858.

12. 1. Y. Yamour, "Instruction Scan for an Farlv Resolution of
a Branch Instruction," IBM Technical Di.sclo.sure BiIll.,
Vol. 23, No. 6, Nox. 1980, pp. 2600-2604.

13. D. W. Anderson, F. .J. Sparacio, and R. M. Tomasulo,
"The Model 91: Machine Philosophx and Instruction
Handline," IBM J. Re.search and Developmsient, Vol. 11,
Jan. 1967, pp. 8-24.

14. Amidahl 470 V/6 Machine Reference Manual, Amdahl,
Sunrivvale, Calif., 1976.

15. The ACS Svstem Central Proce,ssor, manual 929982-11,
Texas Instruments, Dec. 1976.

16. Georee Radin, "The 801 Minicomputer," Prc(-. SVtinp. Ar-
chitectural Suipport fior Programnmning Langwuages and
Opserating Sy.stem.s, Mar. 1982, pp. 39-47. (also available as
Siizarch Comipuiter A rchittecture News, Vol. 10, No. 2, Mar.
1982, anid as IBM Rcsearch tech. report RC 9125, Nox.
1981).

17. F. R. Berleiamp, presentation at CS Division Seminar, UC
Berkelex, 1979.

18. D. A. Patterson and H. Scquin, "RISC-1: A Reduced In-
struLCtionl Set VltSI Computer," Proc. Eighth SYmp. Coin-
I)iter A rchitecture, May 1981, pp. 443-458.

19. C. 'Aidcloes, Jr., .Ju1ip Prediction, Feb. 1977, unpublished
draft.

20. B. T. Hailperin and B. L Hitson, S-1 ArchitectureManual,
Stanfcord Unixersity, Computer Systems I aboratorv tech.
report STAN-CS-79-715, Stanford, Calif., Jan. 1979.

21. A. C,. I iles, Jr., and B. E. Willner, "Branch Prediction
Mcechanism, " IBM Technical Disclosure Buill., Vol. 22, No.
7, 1979, pp. 3013-3016.

22. C. S. Rao, "Technique for Minimizing Branch Delav DLIe
to Incorrect Branch Historv Table Predictions," IBM
Technical Disclo.sure Bull., Vol. 25, No. 1, June 1982, pp.
97-98.

23. R. W. Holate and R. N. Ibbett, "An Analysis of Instruc-
tion Fetching Strategies in Pipelined Computers," IEEE
Tran.s. C0oaiptiters, Vol. C-29, No. 4, Apr. 1980, pp.
325-329.

24. J. J. Losq, "Generalized History Table for Branch Predic-
tion." IBM Technical Disclo.suire Bill., Vol. 25, No. 1,
June 1982, pp. 99-101.

25. J. F. Smith, "A Study of Branch Prediction Strategies,"
Proc. Eighth SYunp. Compuiter Architecture, Max 1981,

January 1984 21

pp. 13)' 148 (aof ~i%aiaifhlc a Si 'etch 'Ni ii /cfwrt Vof. 9.
No. N1 19Sf).

29 'N JI SmItth, -HhItiloL riffhv o17 Pau''tn mdic Refitt d
Iop ()pcroin''i, v /ci inIsRficiii N-,V 1.I2. No. 4. ())

Xli tsticlli // I It " OX'illIk, fi)7"'

NIJ iftt ii' I/ I
i (1 ltrtio if)d InuiI- lotll P'\of.1),"ti

fI I i 98(1 2(18 -269

I1 PontII ic'ItIc i Itdc R .N .Rec fitc,c ftit ten.II I'~tItt'
Ib iI- t bIPrdi 11(111 I ii'HI 11-l lchf i t.ito-\T hfe. MAft I

ICchttica1)/ loO Bll ., Vof. 22. No(. 8AN, Jaii 98ff, p.

Nit

1 Plii Itttitd f ItRcltohtfc1ile NI,ciititi '.' fit Xl

/771717(1 1)7 /m77/ MBi/I V,(1 23, Nil 2. Auf\ 198ff.
"'.7

31 Stttlti.r7171.1 'I 777. Jalin 1, 1953.

1)11 71ff 1.i 'AN Lif ettet,ite I lltelfocl.
oiif,iii c tilt Blf,iltht 11it 77vilii,ll 'I7 .7 ltt,ziiciif Iii 77171\

,tiicf P7 ooe 01o.
-

fit Ii u/cnicu4)77clomiroMilfl/I Vof 24.
Nil. IA'. 1m1c 1981, Il35034.

I' J J. o"Li, \ddte"' (11 1,11ai Iite2tfoik VNIetillv Buftcr
fiBAX f,cltt,c(ilf)s7/ l/ 1/ti/I N ilBul-Vo NI,1 17111 1982.
ff1) 1 f 4- f).

SOFTWNARE PROFESSIONALS

NEWN ENGLANDINATIONAL
OPPORTUNITIES

Are y Li fhinking of career advancemoint? Are you
concertled that the personi who rep resents you be as

professional aritd irnformed in their field as you c7re in

ycours? Let Dani Meagher 'put his years of successful
placemTent couniselling to work foer you. In Newv
Eiiglatncl artet around thc U.S. through our NPC net-

vrk, E.P. Reardon Associates has been placing top
pr Itessio Ials for over 20 years

If the challenge 'is gone or yrour career path is block-

e0 1in your present position. we have requ'iremTents
fo r expereietced professionals in the following areas.

ro"L~e Ar ~ltelr

Perihe lsv itert,ct0671 '1

C', ~, % ej,or~ l~

Ofice Ant n it"ll
Atific 6'rielgee

If you are interested in exploring these career open-
ings, call Dan Meagher. (617) 273-5964, or forward a
copy of your resume to him. All inquiries will be
answered within 48 hours and will be treated with
complete confidentiality.

~~ P.O. Box 1038,
BLJrl'ington, MA 01803
Clients are EOE. Member of NPC.

34. AN J Smtilli 'A (oplIril.ililis Slildy of Sel 'N Isl,II'
Nielilolv MNI,ifflAlt'NIoth17117 ,uid 'I lieit etill,(oCachli
amd N\,iiii Nielnol,v' ', /fill lion. -Sollwiia / l/l 1/
VIll SI1 4, Nil. 2. \NIr 1978, (1p1 121-130)

35. K. I.ec. ''IPet fill Ililc infhrovc'Ilct ()I (Bkt P1pc

Betrkele\ (7o aifple.tv 1984).

M'h.f9"4 of) 110ff Bi/-Voff4,""o
37. It. I- I1eiio .117d 1- 1. S111 tck "Ano 1 777w ru to li 111771

Nloier IcitcclIurc1e 17NLtr.ii977, fppi 16)7/lSii1.((1

.1ohn riv K I' L ue' 7" 111.711 .71

P C C O' 11 l1 71
D)i \

\[le fellt P ,ic.k ird C o ip IIt v II c1 I,,7
d III v 7,C 11 \1 c d \

'fo fl) Ill

~if 5\ ed the fliN olll flti tlle
R c ci rchu 1i7 ki

1.
h i- ito rv

ol 'ri to1 \tno .i hf

1 CIf\i I1m id I'' c

t i'I l\ c -,,l v a d I, II \l .1P.111 .id7dit .i,it 7e711cr

('Ldifon la B c -kc tc I I lP, lC il eClt lie 1 7111 l-c t" tie

(pcratl-IL, v"tcliI)eufl.itltnitrfIc, ll I 1itVLIti d''lli'l llok.717

A la n S i t niI'l MI 111Mt ,c I

D71.71 tilt ctlte o FI C ri)ef. 1 tLleltt (IIL

t cllt ic i tc Utid l-ie v.o717715 .7o

1"l (I, Ve I D\IIr77d l, I'

t i/Itt70 0/a1-117/7'd

eo C oi l l f C o u tl eIll

S11t 'i c h a s p k i nc el '7.1177,71 Ih triote lrc p p l

(N C.i i celI \ o il t'c9 7 9 .11F A\7N ISd r ~t 1)ch c

m 1C i ,7f17H 7-1 lc i oile empliec7n

~il ll l lt eh 'itC Li is ..czi 1 1 -15 ilt C

It crk e1ces, C A' 974"f

22

CMUE
COMPUTER

