Solution to 1 Since the system is alias-free,

\[
H(z)f(z) = \begin{pmatrix} M \, T(z) \\ 0 \\ . \\ . \\ 0 \end{pmatrix}
\]

In other words,

\[
H_0(z)F_0(z) + \cdots + H_{M-1}(z)F_{M-1}(z) = M \, T(z)
\]

\[
H_0(zW^i)F_0(z) + \cdots + H_{M-1}(zW^i)F_{M-1}(z) = 0, \quad i = 1, \cdots, M - 1
\]

If replace \(z \) with \(zW^{M-i} \), it’ll continue to hold:

\[
H_0(z)F_0(zW^{M-i}) + \cdots + H_{M-1}(z)F_{M-1}(zW^{M-i}) = 0, \quad i = 1, \cdots, M - 1
\]

Thus,

\[
\begin{pmatrix} F_0(z) & \cdots & F_{M-1}(z) \\ . & \ddots & . \\ . & . & . \\ F_0(zW^{M-1}) & \cdots & F_{M-1}(zW^{M-1}) \end{pmatrix} \begin{pmatrix} H_0(z) \\ \vdots \\ \vdots \\ H_{M-1}(z) \end{pmatrix} = \begin{pmatrix} M \, T(z) \\ 0 \\ \vdots \\ 0 \end{pmatrix}
\]

We can swap \(H_k(z) \)'s and \(F_k(z) \)'s and the system is still alias-free with the same \(T(z) \).

Solution to 2 a)

\[
H_k(z) = \sum_{i=0}^{M-1} (E_i(z^Mz^{-i})W^{-ki})
\]

\[
= \sum_{i=0}^{M-1} E_i((zW^k)^M(zW^k)^{-i})
\]

\[
= H_0(zW^k)
\]
where
\[H_0(z) = \sum_{i=0}^{M-1} E_i(z^M) z^{-i} \]
\[F_k(z) = \sum_{i=0}^{M-1} (R_i(z^M) z^{-(M-1-i)}) W^{ki} \]
\[= W^{-k} \sum_{i=0}^{M-1} R_i((zW^k)^M)(zW^k)^{-(M-1-i)} \]
\[= W^{-k} F_0(zW^k) \]

where we have used
\[W^{ki} = W^{-k}(W^k)^{-(M-1-i)} \]
in going from line 1 to 2, and
\[F_0(z) = \sum_{i=0}^{M-1} R_i(z^M) z^{-(M-1-i)} \]

b) The distortion function is
\[T(z) = z^{-(M-1)} \prod_{i=0}^{M-1} E_i(z^M) \]

c) From part (a), the AC matrix is
\[
\begin{pmatrix}
H_0(z) & H_0(zW) & \cdots & H_0(zW^{M-1}) \\
H_0(zW) & H_0(zW^2) & \cdots & H_0(z) \\
\vdots & \ddots & \ddots & \vdots \\
H_0(zW^{M-1}) & H_0(z) & \cdots & H_0(zW^{M-2}) \\
\end{pmatrix}
\]

which is obviously a left circulant matrix.

d) Note that
\[E(z^M) = W^* \text{diag}(E_i(z^M)) \]
Further note the relation between AC matrix and polyphase matrix given in the hint (see the proof in Vaidyanathan’s textbook pp234)

\[H(z) = W^H D(z) E^T (z^M). \]

We have

\[\det |H(z)| = cz^{-L} \prod_{i=0}^{M-1} E_i(z^M) \]

which is of the form \(cz^{-K} T(z) \).

e) Since \(E_L(\pi) = 0 \), \(E_L(w_i M) = 0 \) for \(w_i = \frac{\pi}{M} (2n + 1) \). Therefore, \(T(w) = 0 \) for \(w = \frac{\pi}{M}, \frac{3\pi}{M}, \ldots, \) etc. Let

\[N + 1 = Mq + m, \quad 0 \leq m < M \]

There are 4 different possibilities depending upon \((q,m)\):

1. \((q,m) = (\text{odd, odd})\), \(T(w) = 0 \).
2. \((q,m) = (\text{odd, even})\), This problem is avoided.
3. \((q,m) = (\text{even, odd})\), This problem is avoided if \(M \) is odd.
4. \((q,m) = (\text{even, even})\), This problem is avoided if \(M \) is even.

Please check the symmetry and the order of each polyphase components for the four cases mentioned above. The main goal is to avoid the situation that a tap and its image are in the same polyphase component. In such situation, the polyphase component would be symmetric and the transfer function would become zero.

Solution to 3 Note that

\[T(z) = z^{-2} [P_0(z^3) + z^{-1} P_1(z^3) + z^{-2} P_2(z^3)] \]
where the expression inside the bracket is the polyphase decomposition of
$T(z)$ and z^{-2} is the delay ($=M-1$).

Now, by using

$$
\frac{1}{1-az^{-1}} = \frac{1 + a z^{-1} + a^2 z^{-2}}{(1 - az^{-1})(1 + az^{-1} + a^2 z^{-2})} = \frac{1 + a z^{-1} + a^2 z^{-2}}{1 - a^3 z^{-3}}
$$

the followings can be derived:

$$
P_0(z) = \frac{1}{1 - a^3 z^{-1}}, \quad P_1(z) = \frac{a}{1 - a^3 z^{-1}}, \quad P_2(z) = \frac{a^2}{1 - a^3 z^{-1}}
$$

Thus,

$$
\begin{align*}
P(z) &= \frac{1}{1 - a^3 z^{-1}} \left(\begin{array}{ccc}
1 & a & a^2 \\
1 & a & a \\
a^2 z^{-1} & 1 & a \\
z^{-1} & a^2 z^{-1} & 1
\end{array} \right)
\end{align*}
$$

Solution to 4 a)

$$
\hat{X}(z) = \frac{1}{L} \sum_{l=0}^{L-1} [X(z W^l) \sum_{k=0}^{M-1} H_k(z W^l) F_k(z)]
$$

b) Consider Figure 1. Make sure that

$$
\frac{2\pi}{3} - \epsilon \geq \frac{2\pi}{4} + \epsilon
$$

So, $\epsilon \leq \frac{\pi}{12}$. To eliminate aliasing, we can pick $F_k(z)$ to look like those of $H_k(z)$. The transform function is

$$
T(z) = \frac{1}{3} \sum_{k=0}^{3} H_k(z) F_k(z)
$$
Figure 1: