Throughout, let \mathcal{X} denote a finite set, and refer to its elements as states, hence the terminology state space used sometimes to denote \mathcal{X}. A (square) matrix P on \mathcal{X} is simply an $|\mathcal{X}| \times |\mathcal{X}|$ array of scalars, one for each ordered pair of states, namely

$$(p_{xy}, \ x, y \in \mathcal{X}).$$

We shall write $P = (p_{xy})$ when no confusion arises.

Stochastic matrices

Consider a matrix $P = (p_{xy})$ on \mathcal{X}. It is said to be a **stochastic** matrix if $0 \leq p_{xy} \leq 1, \ x, y \in \mathcal{X}$ and

$$\sum_{y \in \mathcal{X}} p_{xy} = 1, \ x \in \mathcal{X}.$$

Thus, for each x in \mathcal{X}, the row

$$(p_{xy}, \ y \in \mathcal{X})$$

can be interpreted as a pmf p_x on \mathcal{X}.

Furthermore, the matrix P is said to **doubly stochastic** if it is a stochastic matrix such that

$$\sum_{x \in \mathcal{X}} p_{xy} = 1, \ y \in \mathcal{X}.$$

Powers of P

The powers P are defined by

$$P^0 = I, \ P^{n+1} = PP^n = P^n P, \ n = 0, 1, \ldots$$

with the identity matrix I on \mathcal{X} naturally defined by

$$I = (\delta_{xy}).$$
We shall use the notation
\[P^n = (p_{xy}^{(n)}) , \ n = 0, 1, \ldots \]
These definitions are well posed as indicated by the following fact.

Fact 0.1 We have
\[PP^n = P^n P , \ n = 0, 1, \ldots \]

Proof. Easy by induction. \(\square \)

Fact 0.2 For every non-negative integers \(r, s, t = 0, 1, \ldots \), it is always the case that
\[P^{r+s+t} = P^r P^s P^t . \]

Proof. Elementary by associativity of the matrix product. \(\square \)

Fact 0.3 If \(P \) is a stochastic matrix, then each of the matrices \(\{ P^n , \ n = 0, 1, \ldots \} \) of \(P \) is also a stochastic matrix.

Proof. Easy by induction. \(\square \)

Irreducibility

The stochastic matrix \(P \) is said to be *irreducible* if for every pair of distinct states \(x \) and \(y \) in \(X \) there exist positive integers \(n(x,y) \) and \(n(y,x) \) such that
\[p_{xy}^{(n(x,y))} > 0 \text{ and } p_{yz}^{(n(y,x))} > 0 . \]

Period
For any non-empty subset \(\{ n_\alpha, \alpha \in A \} \) of \(\mathbb{N} \), we denote its greatest common denominator by
\[
\text{g.c.d.} (n_\alpha, \alpha \in A).
\]

For each state \(x \) in \(X \) we define its period \(d(x) \) as the integer
\[
d(x) = \text{g.c.d.} (n = 1, 2, \ldots : p_{xx}^{(n)} > 0)
\]
with the convention \(d(x) = \infty \) if the set \((n = 1, 2, \ldots : p_{xx}^{(n)} > 0) \) is empty. The state \(x \) is said to be periodic if \(d(x) \geq 2 \) and aperiodic if \(d(x) = 1 \).

Theorem 0.1 An irreducible Markov chain \(P \) on \(X \) has the property that either all its states are aperiodic or they are all periodic with the same period.

Proof. Pick two states \(x \) and \(y \) in \(X \). The chain \(P \) being irreducible, there exist positive integers \(n(x, y) \) and \(n(y, x) \) such that
\[
p_{xy}^{(n(x,y))} > 0 \quad \text{and} \quad p_{yx}^{(n(y,x))} > 0.
\]
Therefore,
\[
p_{yy}^{(n(y,x)+n(x,y))} = \sum_z p_{yz}^{(n(y,x))} p_{zy}^{(n(x,y))} \geq p_{yx}^{(n(y,x))} p_{xy}^{(n(x,y))} > 0.
\]
(2)

On the other hand, whenever
\[
p_{xx}^{(t)} > 0
\]
for some \(t = 1, 2, \ldots \), then
\[
p_{yy}^{(n(y,x)+t+n(x,y))} = \sum_z \sum_v p_{yz}^{(n(y,x))} p_{zy}^{(t)} p_{vy}^{(n(x,y))} \geq p_{yx}^{(n(y,x))} p_{xx}^{(t)} p_{xy}^{(n(x,y))} > 0.
\]
(3)

Therefore, \(d(y) \) divides both \(n(y, x) + n(x, y) \) and \(n(y, x) + t + n(x, y) \), hence \(d(y) \) divides \(t \) since \(n(y, x) + t + n(x, y) - (n(y, x) + n(x, y)) = t \). Thus, \(d(y) \) divides all the elements of the set \(\{ t = 1, 2, \ldots : p_{xx}^{(t)} > 0 \} \), so that, \(d(y) \) divides \(d(x) \) (which is defined as the g.c.d of this set). A similar argument shows that \(d(x) \) divides \(d(y) \), whence \(d(x) = d(y) \). \(\blacksquare \)
Markov chains

Consider a stochastic matrix \(P \) on \(\mathcal{X} \). A collection of \(\mathcal{X} \)-valued rvs \(\{X_n, n = 0, 1, \ldots\} \) (defined on some probability triple \((\Omega, \mathcal{F}, \mathbb{P}) \)) is said to be a (time-homogeneous) Markov chain with one-step transition probabilities \(P \) if

\[
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = P[X_0 = x_0] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

for each \(n = 1, 2, \ldots \) and all \(x_0, x_1, \ldots, x_n \) in \(\mathcal{X} \). The following fact is key to many of the arguments involving Markov chains.

Theorem 0.2 Fix \(k = 0, 1, \ldots \) Then for each \(n = 1, 2, \ldots \), we have

\[
P[X_k = x_0, X_{k+1} = x_1, \ldots, X_{k+n} = x_n] = P[X_k = x_0] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

with arbitrary \(x_0, x_1, \ldots, x_n \) in \(\mathcal{X} \).

Proof. Fix \(k = 1, 2, \ldots, n = 1, 2, \ldots \) and states \(x_0, x_1, \ldots, x_n \) in \(\mathcal{X} \). For any collection of states \(y_0, \ldots, y_{k-1} \) in \(\mathcal{X} \), we have from (4) that

\[
P[X_0 = y_0, \ldots, X_{k-1} = y_{k-1}, X_k = x_0, X_{k+1} = x_1, \ldots, X_{k+n} = x_n]
\]

\[
= \prod_{j=0}^{k-2} p_{y_j y_{j+1}} \cdot p_{y_{k-1} x_0} \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

Therefore,

\[
P[X_k = x_0, X_{k+1} = x_1, \ldots, X_{k+n} = x_n]
\]

\[
= \sum_{y_0, \ldots, y_{k-1}} \prod_{j=0}^{k-2} p_{y_j y_{j+1}} \cdot p_{y_{k-1} x_0} \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

\[
= \left(\sum_{y_0, \ldots, y_{k-1}} \prod_{j=0}^{k-2} p_{y_j y_{j+1}} \cdot p_{y_{k-1} x_0} \right) \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

\[
= \left(\sum_{y_0, \ldots, y_{k-1}} P[X_0 = y_0, \ldots, X_{k-1} = y_{k-1}, X_k = x_0] \right) \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]

\[
= \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}
\]
as desired. ■

From (4), for all $x_0, x_1, \ldots, x_n, x_{n+1}$ in \mathcal{X}, we get both

\begin{equation}
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = P[X_0 = x_0] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}} \tag{7}
\end{equation}

and

\begin{equation}
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n, X_{n+1} = x_{n+1}]
\quad = \quad P[X_0 = x_0] \cdot \prod_{\ell=0}^{n} p_{x_\ell x_{\ell+1}}, \tag{8}
\end{equation}

whence

\begin{equation}
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n, X_{n+1} = x_{n+1}]
\quad = \quad P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] \cdot p_{x_n x_{n+1}} \tag{9}
\end{equation}

upon direct comparison of (7) and (8).

Building upon these observations, if

\begin{equation}
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] > 0, \tag{10}
\end{equation}

it follows that

\begin{equation}
P[X_{n+1} = x_{n+1} | X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = p_{x_n x_{n+1}}, \tag{11}
\end{equation}

suggesting the validity of the relation\(^1\)

\begin{equation}
P[X_{n+1} = x_{n+1} | X_n = x_n] = p_{x_n x_{n+1}}. \tag{12}
\end{equation}

To see that this is indeed the case, we argue as follows: By Theorem 0.2 we get

\begin{equation}
P[X_n = x_n, X_{n+1} = x_{n+1}] = P[X_n = x_n] p_{x_n x_{n+1}}. \tag{13}
\end{equation}

Under (10) we necessarily have

\begin{equation}
P[X_n = x_n] > 0, \tag{14}
\end{equation}

\(^1\)See discussion below.
and the standard definition

\[P[X_{n+1} = x_{n+1}|X_n = x_n] = \frac{P[X_n = x_n, X_{n+1} = x_{n+1}]}{P[X_n = x_n]} \]

(15)

applies. The desired conclusion (12) now follows from (13).

Alternate definition of Markov chains

In most textbooks Markov chains are given a different definition which we now present: A collection of \(\mathcal{X} \)-valued rvs \(\{X_n, \ n = 0, 1, \ldots\} \) (defined on some probability triple \((\Omega, \mathcal{F}, P)\)) is said to be a (time-homogeneous) Markov chain with one-step transition probabilities \(P \) if

\[
P[X_{n+1} = x_{n+1}|X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = \frac{P[X_{n+1} = x_{n+1}, X_n = x_n]}{P[X_n = x_n]}
\]

(16)

for all \(x_0, x_1, \ldots, x_n, x_{n+1} \) in \(\mathcal{X} \), with

\[
P[X_{n+1} = x_{n+1}|X_n = x_n] = p_{x_n x_{n+1}}.
\]

(17)

The difficulty with this definition is that the conditional probabilities involved in (16) are well defined only when

\[
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] > 0
\]

(18)

and

\[
P[X_n = x_n] > 0
\]

(19)

Obviously, (18) implies (19) but the converse is not true, possibly creating ambiguities with the definitions being inconsistent with each other.\(^2\)

A possible solution to this difficulty is to read (16)-(17) as stating instead that

\[
P[X_{n+1} = x_{n+1}|X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = p_{x_n x_{n+1}}
\]

(20)

with the understanding that if

\[
P[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n] = 0,
\]

then the right handside of (20) is taken to be the definition of the conditional probability that \(X_{n+1} = x_{n+1} \) given that \(X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n \). With this definition it is easy to check that both (4) and (12) hold.

\(^2\)Recall that the conditional probability \(P[A|B] \) is not uniquely defined when \(P[B] = 0 \) with each other.
Stationary Markov chains

Consider the (time-homogeneous) Markov chain \(\{X_n, n = 0, 1, \ldots \} \) with one-step transition probabilities \(P \). We write

\[
\pi_n(x) = \mathbb{P}[X_n = x], \quad x \in \mathcal{X}, \quad n = 0, 1, \ldots
\]

and organize these probabilities into a row vector

\[
\pi_n = (\pi_n(x), x \in \mathcal{X}).
\]

Using the law of total probabilities we get

\[
\pi_{n+1}(x) = \sum_y \pi_n(y)p_{yx}, \quad x \in \mathcal{X}, \quad n = 0, 1, \ldots
\]

or in vector notation

\[
(21) \quad \pi_{n+1} = \pi_n P, \quad n = 0, 1, \ldots
\]

Theorem 0.3 Let \(\mu \) denote the pmf of the initial condition \(X_0 \). Then, the (time-homogeneous) Markov chain \(\{X_n, n = 0, 1, \ldots \} \) with one-step transition probabilities \(P \) is stationary if and only if

\[
(22) \quad \mu P = \mu.
\]

Any pmf on \(\mathcal{X} \) which satisfies (22) is called a *stationary* pmf for \(P \).

Proof. First, assume that the Markov chain \(\{X_n, n = 0, 1, \ldots \} \) is stationary. This implies that for each \(n = 0, 1, \ldots \), the rv \(X_n \) has the same distribution as \(X_0 \), i.e., \(\pi_n = \mu \). Substituting this information into (21) yields (22).

Conversely, assume that the initial state \(X_0 \) is distributed according to a pmf \(\mu \) which satisfies the fixed-point equation (22). Using this fact in conjunction with (21) we get that

\[
\pi_1 = \pi_0 P = \mu P = \mu
\]

so that \(\pi_0 = \mu \). Iterating we conclude that

\[
\pi_n = \mu, \quad n = 0, 1, \ldots
\]
Fix \(k = 0, 1, \ldots \) and \(n = 1, 2, \ldots \). With arbitrary \(x_0, x_1, \ldots, x_n \) in \(\mathcal{X} \), Theorem 0.2 states that

\[
\mathbb{P} \left[X_k = x_0, X_{k+1} = x_1, \ldots, X_{k+n} = x_n \right] \\
= \mathbb{P} \left[X_k = x_0 \right] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}} \\
= \mathbb{P} \left[X_0 = x_0 \right] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}} \\
(23) \quad = \mathbb{P} \left[X_0 = x_0, X_1 = x_1, \ldots, X_n = x_n \right].
\]

This establishes the stationarity of the Markov chain.

Existence and uniqueness of stationary pmfs

The stationary pmf is not unique if \(P \) is not irreducible: For instance, with \(\mathcal{X} = \{0, 1\} \) and \(P = I \), every pmf on \(\mathcal{X} \) is a stationary pmf.

More generally, partition \(\mathcal{X} \) into two non-empty subsets \(\mathcal{X}_1 \) and \(\mathcal{X}_2 \) so that \(\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2 \). Assume the stochastic matrix \(P \) on \(\mathcal{X} \) to be of the form

\[
P = \begin{pmatrix}
P_1 & O_{12} \\
O_{21} & P_2
\end{pmatrix}
\]

with \(P_1 \) and \(P_2 \) stochastic matrices on \(\mathcal{X}_1 \) and \(\mathcal{X}_2 \), respectively. Here \(O_{11} \) and \(O_{21} \) are matrices with all zero entries of the appropriate dimensions. Assume now that \(\mu_1 \) and \(\mu_2 \) are stationary pmfs for \(P_1 \) and \(P_2 \), respectively. For each \(\lambda \) in \((0, 1)\), the pmf \(\mu_\lambda \) on \(\mathcal{X} \) defined by

\[
\mu_\lambda = (\lambda \mu_1, (1-\lambda) \mu_2)
\]

is stationary pmf for \(P \).

Limit theorems for Markov chains

Several limit results are available under certain conditions. The strongest such results guarantee the convergence

\[
\lim_{n \to \infty} \pi_n(x) = \pi(x), \quad x \in \mathcal{X}
\]

\((25) \)
for some pmf π on \mathcal{X}, or in vector notation

$$\lim_{n \to \infty} \pi_n = \pi. \tag{26}$$

Sometimes it is only possible to show that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \pi_k(x) = \pi(x), \quad x \in \mathcal{X} \tag{27}$$

for some pmf π on \mathcal{X}, or in vector notation

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \pi_k = \pi. \tag{28}$$

Obviously (25)-(26) implies (27)-(28) since usual convergence implies Cesaro convergence.

Before giving conditions for either (25)-(26) or (27)-(28) to hold, we make a couple of comments as to the identify of the limit pmf π appearing there.

If (25)-(26) takes place, then letting n go to infinity in (21) we conclude that

$$\lim_{n \to \infty} \pi_{n+1} = \lim_{n \to \infty} (\pi_n P) = \left(\lim_{n \to \infty} \pi_n \right) P \tag{29}$$

since finite summation permute with limits. Thus, in the limit

$$\pi = \pi P \tag{30}$$

and π is necessarily a stationary pmf for P.

In a similar vein, for each $n = 1, 2, \ldots$, we find

$$\frac{1}{n+1} \sum_{k=0}^{n} \pi_k = \frac{1}{n+1} \left(\pi_0 + \sum_{k=1}^{n} \pi_{k-1} P \right) \tag{31}$$

$$= \frac{1}{n+1} \pi_0 + \frac{n}{n+1} \cdot \left(\frac{1}{n} \sum_{k=1}^{n} \pi_{k-1} \right) P.$$
Letting n go to infinity and assuming that (27)-(28) holds, we readily conclude that the limit π in (27)-(28) again satisfies (30), and π is necessarily a stationary pmf for P.

The case

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

with $\mathcal{X} = \{0, 1\}$ is quite instructive. Obviously P is irreducible and periodic with all states having period two. It is also easy to see that for any pmf π on the initial state X_0, we have

$$P[X_n = 1] = \begin{cases} P[X_0 = 1] = \pi(1) & \text{if } n \text{ odd} \\ P[X_0 = 0] = 1 - \pi(1) & \text{if } n \text{ even} \end{cases}$$

It is now plain that (25)-(26) does not hold unless $\pi(1) = \pi(0) = \frac{1}{2}$, i.e., the uniform pmf on \mathcal{X}. Observe also that (27)-(28) always holds in this case with π uniform on \mathcal{X}. Thus, irreducibility is not sufficient by itself to ensure (25)-(26). Failure to have convergence can be traced to periodicity.

Theorem 0.4 If the Markov chain is irreducible and aperiodic, then there exists a unique stationary pmf μ for P and (25)-(26) always holds with limit μ.

Theorem 0.5 If the Markov chain is irreducible (and possibly periodic), then there exists a unique stationary pmf μ for P and (27)-(28) always holds with limit μ.

Consider the case

$$P = \begin{pmatrix} a & 1 - a \\ 1 - b & b \end{pmatrix} \quad \text{with} \quad 0 \leq a, b \leq 1$$

The cases $a = b = 1$ and $a = b = 0$ have already been discussed. It is straightforward to check that (22) takes the form

$$\mu(0) = a\mu(0) + (1 - b)\mu(1)$$

$$\mu(1) = (1 - a)\mu(0) + b\mu(1)$$

(33)

This reduces to

$$(1 - a)\mu(0) = (1 - b)\mu(1)$$
and the constraint $\mu(0) + \mu(1) = 1$ yields

$$
\mu(0) = \frac{1 - a}{2 - (a + b)} \quad \text{and} \quad \mu(1) = \frac{1 - b}{2 - (a + b)}
$$

provided $a + b < 2$, in which case (22) has a unique solution! The case $a + b = 2$ is equivalent to $a = b = 1$, for which there are infinitely solutions as we have seen earlier.