1. Consider the scalar quantization of a \(\mathcal{R} \)-valued rv. \(X \) with \(E[|X|] < \infty \), \(E[|X|^2] < \infty \). Let a quantizer \(Q : \mathcal{R} \rightarrow \mathcal{C} = \{y_1, ..., y_N\} \subset \mathcal{R} \) be such that its codebook \(\mathcal{C} \) satisfies the "centroid" condition. Show that
 a) \(E[X - Q(X)] = 0 \), i.e., the quantizer output is unbiased;
 b) \(E[Q(X)(X - Q(X))] = 0 \), i.e., the quantizer output is uncorrelated with the quantization error; and
 c) \(E[(X - Q(X))^2] = \sigma_X^2 - \sigma_{Q(X)}^2 \), i.e., the variance of the quantization error equals the difference of the variances of the signal \(X \) and its quantized version.

2. Proakis, Problem 4.19: \(\pi/4 \)-QPSK may be considered as two QPSK systems offset by \(\pi/4 \) radians.
 a) Sketch the signal space diagram for a \(\pi/4 \)-QPSK signal.
 b) Using Gray encoding, label the signal points with the corresponding data bits.

3. Proakis, Problem 4.21 (a), (c): A PAM partial response signal (PRS) is generated as shown in Figure P4.21 by exciting an ideal low-pass filter of bandwidth \(W \) by the sequence \(B_n = I_n + I_{n+1} \) at a rate \(\frac{1}{T} = 2W \) symbols/s. The sequence \(\{I_n\} \) consists of binary digits selected independently from the alphabet \(\{+1, -1\} \) with equal probability. Hence, the filtered signal has the form
 \[
 v(t) = \sum_{n=-\infty}^{\infty} B_n g(t - nT), \quad T = \frac{1}{2W}
 \]
 a) Sketch the signal space diagram for \(v(t) \) and determine the probability of occurrence of each symbol.
 b) Determine the autocorrelation and power density spectrum of the three-level sequence \(\{B_n\} \).
 c) The signal points of the sequence \(\{B_n\} \) form a Markov chain. Sketch this Markov chain and indicate the transition probabilities among the states.

4. Proakis, Problem 4.22: The low-pass equivalent representation of a PAM signal is
 \[
 u(t) = \sum_n I_n g(t - nT)
 \]
 Suppose \(g(t) \) is a rectangular pulse and
 \[
 I_n = a_n - a_{n-2}
 \]
where \(\{ a_n \} \) is a sequence of uncorrelated binary-valued (1,-1) random variables that occur with equal probability.

a) Determine the autocorrelation function of the sequence \(\{ I_n \} \).
b) Determine the power density spectrum of \(u(t) \).
c) Repeat (b) if the possible values of the \(a_n \) are \((0,1) \).

5. Proakis, Problem 4.28 (just the phase tree): Sketch the phase tree, the state trellis, and the state diagram for partial response CPM with \(h = \frac{1}{2} \) and

\[
g(t) = \begin{cases}
\frac{1}{T} & 0 \leq t \leq 2T \\
0 & \text{otherwise}
\end{cases}
\]

6. Proakis, Problem 4.30: Show that 16 QAM can be represented as a superposition of two four-phase constant envelope signals where each component is amplified separately before summing, i.e.,

\[
s(t) = G(A_n \cos 2\pi f_c t + B_n \sin 2\pi f_c t) + (C_n \cos 2\pi f_c t + D_n \sin 2\pi f_c t)
\]

where \(\{ A_n \}, \{ B_n \}, \{ C_n \}, \) and \(\{ D_n \} \) are statistically independent binary sequences with elements from the set \(\{+1, -1\} \) and \(G \) is the amplifier gain. Thus, show that the resulting signal is equivalent to

\[
s(t) = I_n \cos 2\pi f_c t + Q_n \sin 2\pi f_c t
\]

and determine \(I_n \) and \(Q_n \) in terms of \(A_n, B_n, C_n \) and \(D_n \).

7 Benedetto-Biglieri, Problem 6.5: Derive the squared Euclidean distance \(d_B^2 \) for partial-response CPM with rectangular pulses and \(L = 2 \). Compare the values obtained by considering the merges at \(t = 3T \) and those at \(t = 4T \).
Figure 1: P4.21