Problem 6.1 (ECE 515M 7-11)

(a) This is very similar to the orthogonal signaling case covered in class.

\[\gamma(t) = e^{j\theta} A[n] u(t) + w(t) \]

On basis \(\Phi_0(t) = \frac{1}{\| h \|} h(t) \); pick any \(\Phi_n(t) \) to get complete basis.

\[\langle \gamma(t), \Phi_n(t) \rangle = e^{j\theta} A[n] \langle h, \Phi_n \rangle + \langle w, \Phi_n \rangle \]

\[= A[n] e^{j\theta} \| h \| \delta[n] + \text{w}[n] \]

Since \(\{\Phi_n\} \) is orthonormal set \(\text{w}[n] \) is an IID zero-mean.

\[\rho_n = \text{variance} \text{ c.s. symmetric} \]

Hence, since \(w(t) \) is independent of \(A[n] \), \(\text{w}[n] \) is independent of \(A[n] e^{j\theta} \) and since \(\text{w}[n] \) is also IID, \(\{x[n] e^{j\theta}\} \) is independent of \(A[n] \) \& \(x[n] \). Hence, \(x[n] \) suffices for optimal detection.

ie. the optimal detector decides on \(A[n] \) based on

\[x[n] e^{j\theta} \]

\[\text{c.s. symmetric} \]

\[A_{\text{max}} = A_{\text{max}} = \text{argmax} \sum_{k=0}^{12} f_{x[n] 1/k} (x[n] 1/k) \]

\[= \text{argmax} \int_0^{2\pi} f_{\theta}[x[n] 1/k, \theta] f_{\theta}(\theta) \, d\theta \]
But \(\sum_{n=1}^{\infty} e^{j\theta} (A[n]) \frac{1}{1+n} \) = \(C e^{-\frac{1}{m^2} \| \mathbf{x} \|^2 - 2 e^{j\theta} \mathbf{y} \| \mathbf{y} \|^2} \)

\(C' e^{-\frac{1}{m^2} \| \mathbf{y} \|^2} e^{-2 \frac{e^{j\theta} \mathbf{y} \| \mathbf{y} \|^2} \| \mathbf{y} \|^2} \)

which gives

\[\hat{A}_{\text{MAX}} = \max_{k \in \mathbb{C}} I_0 \left(\frac{2}{\omega} \sqrt{\| \mathbf{x} \|^2}, \frac{\| \mathbf{y} \|^2}{\omega} \right) e^{-\frac{\| \mathbf{y} \|^2}{\omega^2}} \]

So

\[I_0 (0) \leq I_0 \left(\frac{2}{\omega} \sqrt{\| \mathbf{x} \|^2}, \frac{\| \mathbf{y} \|^2}{\omega} \right) e^{-\frac{\| \mathbf{y} \|^2}{\omega^2}} \]

\[\Rightarrow \hat{A} = 1 \quad \hat{A}_0 = 0 \]

\[\Rightarrow I_0 (0) \leq I_0 \left(\frac{2}{\omega} \sqrt{\| \mathbf{x} \|^2}, \frac{\| \mathbf{y} \|^2}{\omega} \right) e^{-\frac{\| \mathbf{y} \|^2}{\omega^2}} \]

So the test reduces to:

\[\text{Let } F(\gamma) = \frac{\hat{A}_0 \left(I_0 \left(\frac{k}{\omega} \sqrt{\| \mathbf{x} \|^2}, \frac{\| \mathbf{y} \|^2}{\omega} \right) \right)}{\ln (I_0 (\gamma))} \Rightarrow F(\gamma) = \frac{\hat{A}_0 \left(I_0 \left(\frac{k}{\omega} \sqrt{\| \mathbf{x} \|^2}, \frac{\| \mathbf{y} \|^2}{\omega} \right) \right)}{\ln (I_0 (\gamma))} \]

Then the test reduces to:

\[\int_{-\infty}^{\infty} \left| \mathbf{x}(t) \right|^2 |h(t)|^2 dt \]

\[\Rightarrow \mathbf{y} = \mathbf{\text{ const }} \]

\[\Rightarrow \gamma = \frac{\pi^2}{2} F \left(\frac{\mathbf{\text{ const }}}{\omega^2} \right) \]

(b) Let \(A_k = |\mathbf{p}| e^{j\phi_k} \) denote the \(k \)-th constellation symbol in polar form,

\[|\mathbf{p}| > 0 \]

Since discrimination relies on all \(A_k \) having distinct magnitudes, if \(|\mathbf{p}| = \) for some \(n \) then discrimination is not possible, even in the absence of noise. Examples include PSK & QAM constellations. So to be able to discriminate \(W \), \(|\mathbf{p}| \rightarrow 0 \) and \(\omega \rightarrow 0 \), all constellation symbols must have different magnitudes. In
\((c) \quad p_Y(y) = \frac{1}{2} pr(H = 0 | H = 0) + \frac{1}{2} pr(H = 1 | H = 0) \)

Let \(L = \int s\gamma(t)\xi(t)\,dt \)

Given \(H = 0 \), \(L = \sqrt{\int s\gamma(t)\xi(t)\,dt} = |\varepsilon| \)

\(m \sim \mathcal{N}(0, \sigma^2||\varepsilon||^2) \)

So \(p_Y(\varepsilon | H = 0) = p_Y(H = 1 | H = 0) = p_Y(|\varepsilon| > \gamma) \)

Given \(H = 1 \), \(L = \sqrt{e^{\theta}||\varepsilon||^2 + |\varepsilon|} \)

\(m \sim \mathcal{N}(0, \sigma^2||\varepsilon||^2) \)

So \(p_Y(\varepsilon | H = 1) = p_Y(H = 0 | H = 1) = p_Y(e^{\theta}||\varepsilon||^2 + |\varepsilon| < \gamma) \)

where \(\gamma = \frac{\sigma^2}{2} \left(\frac{\int s^{2}\gamma(t)^2\,dt}{\sigma^2} \right) \)
Problem 6.2

(a) \(N = 2, \quad 2\pi N v = 2\pi mk \Rightarrow \frac{2\pi}{T} = \frac{2\pi mk}{T} \quad k = 1, 2. \)

Without loss of generality assume \(k_2 > k_1 \)

\[s_{c_0} = \frac{1}{2}(s_{c_1} + s_{c_2}) = \frac{\pi}{T} \left[m_1 + m_2 \right] / 2. \]

\[s_{c_k} = \frac{1}{s_0} \left(s_{c_2} - s_{c_1} \right) = \left(\frac{m_2 - m_1}{2} \right) \frac{2\pi}{T} \]

\[s_{c_1} = s_{c_e} - s_{c_d}, \quad s_{c_2} = s_{c_e} + s_{c_d}, \quad b_k = \lambda^{-1} \quad u = 1 \]

So \(b_{\text{A}1} = b_{\text{A}2} + b_{\text{A}3} \quad b_{\text{A}1} = b_{\text{A}2} \quad b_{\text{A}3} \)

Hence \(g_{\text{A}1}(t) = \sin \left(s_{c_e} t + \frac{2\pi}{T} \right) \]

Hence we need to pick \(d(t) \) so \(\theta(0) \) is \(\sin \) and \(\theta(t) \) be \(\cos \) in (1) can be expressed as in (2).

Let \(s_1(t) \) denote the signal in (1) and \(s_2(t) \) the signal in (2). Need to show that \(n > 0 \)

For \(N \leq t \leq (N+1)T \) \(s_1(t) = s_2(t) \) for proper choice of \(d(t) \).

First, since CPSK is memoryless, \(d(t) = 0 \) for \(t < 0 \) and \(t > T \).

Next, \(n = 0 \), \(t = 0 \) \(s_1(t) = \theta \) \(\Rightarrow \) \(s_2(0) = \sin(\theta(0)) \Rightarrow \theta(0) = 0 \pi \)

Also \(n = 0 \), \(t = 0 \) \(s_1(t) > 0 \) \(\Rightarrow \) \(\theta(0) = 2\pi \). Pick \(\theta(0) = 0 \).

Finally, need to pick \(d(t) : \)

\[\text{For } N \leq t \leq (N+1)T \quad s_1(t) = s_2(t) \Rightarrow \]

\[g_{\text{A}1}(t - N) = \sin \left(s_{c_e} t + \int_0^T u(t) dt \right) \]
Clearly, since the phase in the left hand side of (**) varies linearly with t, to get the RHS to vary linearly with t it is necessary that \(\int_0^t u(t) \, dt \) is a linear function of t, which do to (**) implies that \(d(t) \) is a constant in \([0,T]\), i.e.

\[
\frac{c}{d(t)}
\]

Equating the rates of change on both sides of (**) gives

\[
S_e + \sum_d b_d [e] = S_e + \sum_d c b_d [e] \quad \Rightarrow \quad c = 1
\]

Noting also that

\[
S_e t = S_e (t - n T) + \sum_{k=0}^{n-1} S_e (k+1) T - k T
\]

\[
= S_e (t - n T) + \sum_{k=0}^{n-1} \int_{k T}^{(k+1) T} d(t) \, dt
\]

and substituting in (**) we get

\[
\sin(S_e (t - n T) + \sum_d b_d [e] (t - n T)) = \sin(S_e (t + n T)) + \sum_{k=0}^{n-1} \left[\frac{S_e + \sum_d b_d [e]}{k T} \right] \left[\int_{k T}^{(k+1) T} d(t) \, dt + \sum_d b_d [e] (t - n T) \right] \int_{2\pi}^1 \text{Integrate term outside}
\]

\[
\sin(S_e (t - n T) + \sum_d b_d [e] (t - n T)) = \sin(S_e (t - n T) + \sum_d b_d [e] (t - n T))
\]
(b) Again assume \(S_1 < S_2 < S_3 < \cdots < S_n \), and let

\[S_d = \frac{S_1 + S_2}{2}, \quad S_{d-1} = \frac{S_{n-1} + S_n}{2} \]

Then, while

\[S_k = S_c + b_k S_d, \quad \text{i.e.} \quad S_{AM-k} = S_c + b_k S_d, \]

Note that \(|b_k| = 1 \) \(\Rightarrow \) \(b_1 < b_2 < \cdots < b_n = 1 \),

i.e. we have \(AM \),

\(u(t) = \sum_{k=0}^{\infty} b_k S_d e^{(t-kT)} \)

CPFSK \(\iff \) \(S_{d+kT} = 2\pi m, \quad m \in \mathbb{Z}, \quad k \neq 0, \quad k \neq 1, 2, \ldots, N^2 \).

The proof is then identical to that of part (a), since after eqn 49, all steps remain identical.