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DETECTION AND ESTIMATION
THEORY

THE PARAMETER ESTIMATION PROBLEM

1 The basic setting
Throughout, p, ¢ and £ are positive integers.

The setup
With O being a Borel subset of R”, consider a parametrized family {F}, 6 € O}
of probability distributions on R¥. The problem considered here is that of esti-
mating # on the basis of some R*-valued observation whose statistical description
depends on 6.

The setting is alway understood as follows: Given (2, ) some measurable
space, considerarvyY : ) — R* defined on it. With {Fy, 0 € ©}, we associate
a collection of probability measures {Py, § € O} defined on F such that

IPQ[YGB]:/dFe(y)7 Bgfgk)’

B

Sufficient statistics
It is customary to refer to any Borel mapping 7' : R¥ — RY as a statistic.

A statistic T : RF — R is said to be sufficient for {Fy, § € O}, or al-
ternatively, for estimating 6 on the basis of Y, if there exists a mapping 7 :
R? x B(R*) — [0, 1] which satisfies the following conditions:

(i) For every B in B(RF), the mapping R — [0,1] : t — ~(B;t) is Borel
measurable;

(i) For every t in RY, the mapping B(R*) — [0,1] : B — ~(B;t) is a
probability measure on B(R¥); and

(iii) For every 6 in ©, the property

B € B(RF)

Po[Y € BIT(Y) = t] =y(Bit) Py—as. g,

holds.
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In other words, the statistic 7' : R¥ — R is sufficient for {Fy, § € O} if the
conditional distribution of Y under Py given T'(Y") is independent of 0.

Completeness
The family {Fy, 6 € ©} is complete if whenever we consider a Borel mapping
1 : R¥ — R such that

Eo [[9(Y)]] <00, #€©

the condition
implies
Py[p(Y)=0]=1, 0€0O.

Lemma 1.1 If the family {Fy, 0 € ©} is complete, then there exists no non-
trivial sufficient statistic for estimating 6 on the basis of Y .

2 Finite variance estimators

An estimator for 6 on the basis of Y is any Borel mapping g : R*¥ — RP. We
define the estimation error at 6 (in ©) associated with the estimator ¢ : R¥ — RP
as the rv £,(0; Y') given by

g,(0;Y)=9g(Y) — 6.

Finite mean estimators
An estimator ¢ : R¥ — R? is said to be a finite mean estimator if

1=1,...,p

Eq [lg:(Y)|] < oo, 6 € 0.

The bias of the finite mean estimator g : R¥ — RP at 6 is well defined and given
by
bo(g) = Eg [e4(0;Y)] = Eq [9(Y)] — 0.
The finite mean estimator g : R* — R? is said to be unbiased at 0 if by(g) = 0.
Furthermore, the finite mean estimator g : R* — RP is said to be unbiased if

Ey[g(Y)] =6, 6co.
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Finite variance estimators
An estimator ¢ : R¥ — RP? is a finite variance estimator if

1=1,...,p

EQ [|gz(Y)|2:| < 0, 0 e @

Obviously, a finite variance estimator is also a finite mean estimator. The error
covariance of the finite variance estimator ¢ : R¥ — RP at f is the p X p matrix

2¢(g) given by
Yo(9) = Eg [e4(0; Y ),y (0; )]

In general, the matrix ¥ (g) is not the covariance matrix of the error g(Y"); in fact
we have

Yo(g) = Cove [g(Y)] + be(9)be(g)', 0 € O.

MVUEs
A finite variance estimator ¢g* : R¥ — RP is said to be a Minimum Variance
Unbiased Estimator (MVUE) if it is unbiased and

Xo(9%) < Zo(g), 0€0O

for any other finite variance unbiased estimator g : R¥ — RP. Alternatively, a
finite variance estimator ¢* : R¥ — RP is said to be an MVUE if it is an unbiased
estimator and

Cov [¢"(Y)] < Cove[g(Y)], 0€©

for any other finite variance unbiased estimator g : R* — R?,

Under the completeness of the family { Fy, § € ©}, unbiased estimators for 6 on
the basis of Y are essentially unique in the following sense.

Lemma 2.1 Assume the family {Fy, § € ©} to be complete. If the finite mean
estimators g1, g : R¥ — RP are unbiased, then

Polg1(Y)=g(Y) =1, f€0.
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3 The Rao-Blackwell Theorem

A basic step in the search for MVUEs is provided by the Rao-Blackwell Theorem.

Complete sufficient statistic
A statistic T : R¥ — R is said to be a complete sufficient statistic for { Fy, § € O}
if it is a sufficient statistic for 6 on the basis of Y such that the family { Hy, 0 € O}
of probability distributions on R? is complete where

t € RY

Ho(t) =Py [T(Y) <t], ,_ o

Rao-Blackwell Theorem

Theorem 3.1 Let T : R* — R be a sufficient statistic for {Fy, § € ©}. With
any finite variance estimator g : R¥ — RP, define the mapping § : R* — RY given

by
g(t) = /ng(y)dv(y,t), t € RY

where the mapping v : R? x B(R*) — [0, 1] appears in the definition of the
sufficiency of the statistic T : RF — RY,

The mapping § o T : R* — RP? is a finite variance estimator for  on the basis
of Y such that

and

for every 6 in ©. Moreover,

Yo(goT) = ¥o(g)

at some 0 in © iff
Py[g(Y) = g(T(Y))] = 1.

The “algorithm” that takes the estimator ¢ into the estimator g o 7' does not
change the bias but reduces “variance.” These properties are simple consequences
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of Jensen’s inequality (for conditional expectations) and of the law of iterated
conditioning applied to the fact that

9(r(Y)) =B [g(Y)[T(Y)], Py—as.

for every 6 in O.
The Rao-Blackwell Theorem has the following consequence.

Corollary 3.1 LetT : R* — RY be a sufficient statistic for { Fy, 0 € ©}. Assume
that there exists a Borel mapping § : RY — RP such that jo T : RF — RP is a
finite variance unbiased estimator for 6 on the basis of Y .

Then, the estimator g o T : R* — RP is an MVUE for 6 on the basis of Y’
whenever the Borel mapping g : R? — RP is essentially unique in the following
sense: If Borel mappings g1, g» : R? — P have the property that for each: = 1, 2,
the estimator §; o T : R* — RP is a finite variance unbiased estimator for 6 on the
basis of Y, then

Polg1(T(Y) = g(T(Y)] =1, 0¢€®.

Finding MVUEs

The needed uniqueness condition in Corollary 3.1 can be guaranteed by asking
for a stronger form of sufficiency for the sufficient statistic 7' : R¥ — RY,

Lemma 3.1 Let T : R¥ — RY be a complete sufficient statistic for {Fy, § € ©}.
If there exists a Borel mapping § : R? — RP such that g o T : R* — RP is a finite
variance unbiased estimator for 6 on the basis of Y, then the following holds:

(i) The Borel mapping g : R? — RP is essentially unique in the following
sense: If the Borel mappings g, g. : RY — RP have the property that for each
1 = 1,2, the estimator g; o T : R* — RP is a finite variance unbiased estimator for
6 on the basis of Y, then

Pol[g1(T(Y) = g(T(Y)] =1, 0¢€6.

(ii) The estimator g o T : R¥ — R? is MVUE.
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Part (i) is a consequence of the fact that 7' : R* — R? is a complete sufficient
statistic for {Fp, 0 € O}, and Part (ii) follows then by Corollary 3.1. Taken
together, these results lead to the following strategy for finding MVUEs:

(i) Find a complete sufficient statistic 7" : R* — R? for {F}, § € O};

(ii) Find a finite variance unbiased estimator g : R* — RP for 6 on the basis of
Y - This step is often implemented by guessing g = g o T' for some Borel
mapping g : R — RP;

(iii)) Absent such a guess, generate from g the Borel mapping g : R? — RP? as
per the Rao-Blackwell Theorem. The estimator g o 7" is MVUE.

4 Exponential families

Recall that the family {Fy, 0 € O} is an exponential family (with respect to
F) if its absolutely continuous with respect to £, and the corresponding density
functions { fy, 6 € ©} are of the form

fo(y) = C(0)q(y)e? O EY) F _ae.

for every 6 in © with Borel mappings C': © — R, Q: 0 — R%, ¢: RF - R,
and K : R¥ — R, The requirement

g fo(y)dF(y)=1, 06€0O

reads
C(0) / g(y)e? W ar(y) =1, 6eo,
Rk

This is equivalent to
c@) >0, €O
and
0< / q(y)eR KW p(y) < 0o, e O.
RE

Exponential families and sufficient statistics
An exponential family always admits at least one sufficient statistic.
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Theorem 4.1 Assume {Fy, 6 € ©} to be an exponential family (with respect to
F). Then, the mapping K : R* — RY is a sufficient statistic for { F, 6 € O},

The sufficient statistic K : R¥ — R? admits a simple characterization as a
complete sufficient statistic.

Theorem 4.2 Assume {Fy, 0 € O} to be an exponential family (with respect
to F). Then, the mapping K : R — RY is a complete sufficient statistic for
{Fy, 8 € O} if the set

Q(O) ={Q(0): 0O},

contains a q-dimensional rectangle.

A proof

Consider a Borel mapping ¢ : R? — R such that
By [[P(K(Y))]] <00, #€0O.

We need to show that if

then
Pop(K(Y))=0]=1, 6€0O.

The integrability conditions are equivalent to

[ K@) W ar) < . <.

With u = (uq, ..., u,)" in CY, we note that

» V(K (y))a(y)e" *P|dF(y) < oo

as soon as N(u) = ((R(w1),...,R(u,)) lies in Q(O). This is a consequence of
the fact that

[V (y))a(y)e | = q(y) v (K (y))] - [ )|
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where
q
W EY)| = |Heuz'Ki(y)|
i=1

q
_ | H 6(%(7ti)+j%(ui))Ki(y)|
=1

q
= | H e%(ui)Ki(’y)’
=1

q

(1) = [[erer

=1

so that
5 V(K (y))a(y)e” K |dF(y) = /R (K ())|q(y)e" W KW aF(y).

Let R denotes a ¢g-dimensional rectangle contained in Q(0), i.e.,

q

R = H[az‘,bi} C QO).

=1
The arguments given above then show that on the subset R* given by

R =] ([ai,b] + jR),

i=1

the C-valued integral
V(u) = | V(K (y)g(y)e" “VdF(y)
Rk

is well defined as soon as u = (uy,...,u,) liesin R* (hence in R).
Under the enforced assumptions on the mapping ¥ : R? — R, we have

U(u)=0, uweR.
Standard properties of functions of complex variables imply that

U(u)=0, wueR".



5 THE CRAMER-RAO BOUNDS 9

In particular, given the form of R*, we also have
@(a%—ju) =0, uwelkf?
where @ = (ay, ..., a,). It now follows the theory of Fourier transforms that

¢(K(y))Q(y)€alK(y) =0 F —aae.

and the desired conclusion is readily obtained.

5 The Cramér-Rao bounds

The Cramer-Rao bound requires certain technical conditions to be satisfied by the
family {Fy, 0 € ©}.

CR1 The parameter set © is an open set in R”;

CR2a The probability distributions {Fp, § € ©} are all absolutely continuous
with respect to the same distribution ' : R* — R,. Thus, for each 6 in ©,
there exists a Borel mapping fy : R¥ — R such that

Yy
Foly) = / fo(m)dF(n), y € R

CR2b Moreover, the density functions {fy, 6 € O} all have the same support in
the sense that the set {y € R¥ : fy(y) > 0} is the same for all § in ©. Let
S denote this common support;

CR3 For each 6 in O, the gradient Vy fy(y) exists and is finite on S}

CR4 For each 0 in ©, the square integrability condition

Eq

log fo(Y)

0
00;

2
] <oo, t=1,...,p

holds;
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CRS The regularity condition

a(zi/gfa(y)dF(y)Z/S(a%ife(y)> dF(y), i=1,...,p.

holds for each # in ©. This is equivalent to asking

[ (o)) arw =0 =1

/Sfe(y)dF(y) = 1.

since

The Fisher information matrix
Under Conditions (CR1)-(CR4), define the Fisher information matrix M (0) t
parameter # as the p X p matrix given entrywise by

0 0 .
My (6) = Bo | - lou fo¥) - o tog oY) i =10
i J

or equivalently,

M(0) =Eq [(Volog f5(Y)) (Velog fo(Y))] -

Regular estimators
A finite variance estimator g : R¥ — RP is a regular estimator (with respect to the
family { Fy, 0 € ©}) if the regularity conditions

o ([swnwirw) = [ow (5 0w)arw. =1

hold for all # in ©.
The regularity of an estimator g : R¥ — R? amounts to

8691 (Eg [9(Y)]) = Eq {g(Y) (;; logfg(Y)>] L i=1,...,p.

The bounds
The generalized Cramer-Rao bound is given first
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Theorem 5.1 Assume Conditions (CR1)—(CRS). If the Fisher information ma-
trix M (0) is invertible for each 6 in ©, then every regular estimator g : R¥ — RP
(with respect to the family { F, 0 € ©}) obeys the lower bound

So(g) = bo(9)bo(9)" + (I + Viabo(g)) M(0)™" (I, + Vobe(9))"-
Equality holds at 6 in © if and only if there exists a p X p matrix K () such that
g(Y) =0 =1bo(g) + K(0)Vylog fo(Y) F —ae.

with
K(0) = (I, + Vabe(g)) M(0)~".

The classical Cramer-Rao bound holds for unbiased estimators, and is now a
simple corollary of Theorem 5.1.

Theorem 5.2 Assume Conditions (CR1)—(CRS). If the Fisher information ma-
trix M () is invertible for each 0 in O, then every unbiased regular estimator
g : R* — RP (with respect to the family {Fy, 0 € ©}) obeys the lower bound

Yo(g) > M(6)~"
Equality holds at 0 in © if and only if there exists a p X p matrix K () such that
g(Y)—60=K(0)Vglog fo(Y) F —aee.
with
The Fisher information matrix is often computed through an alternate expres-

sion given next. It requires two additional conditions. The first one provides
smoothness beyond (CR3).

CR6 For each 0 in O, the partial derivatives

82

mf@(y)

all exist and are finite on .S
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CR7 Foreach 6in ©,

.

CRS8 The regularity conditions

82
96,00,

fg(Y)H <oo, 4,j5=1...,p;

0? 02
YT Fly)= | - F Li=1,...
S0 | wEw) = [ S fwarw). =1

holds on ©. This is equivalent to asking

32

Smf@(’_U)dF(y):O, Z,jzl,...,p

holds on O.

Lemma 5.1 Assume Conditions (CR1)—(CRS8). Then, the Fisher information
matrix takes the form

2

0 o
M;;(0) = —Eq {m 10gf9(Y)] , Ly=1,...,p

Facts and arguments
Two key facts flow from the assumptions: Fix 6 in ©. From (CR3) and (CRS),
we get

Eg [Vglog fo(Y )] = 0,.

Recall that
Eo[g(Y)] =0 +bs(g), 6€O.

Differentiating and using (CR3), we conclude that
I, + Vobo(g) =By [g(Y) (Vglog f4(Y))']
provided the estimator g : R* — RP? is regular. Therefore,

I,+ VObG(Q)
= Eo [(9(Y) —Eg[g9(Y)]) - (Volog fo(Y))']
= Eo [(g(Y) =0 —by(g)) - (Volog fo(Y))'] .
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When p = 1, this relation forms the basis for a proof via the Cauchy-Schwarz
inequality.

An alternate proof, valid for arbitrary p, can be obtained as follows: Introduce
the RP-valued rv U (6, Y') given by

U0,Y)=g(Y) =0 —by(g) — (I, + Vby(g)) M(0) 'Vylog fo(Y), 6€O.
Note that the rv U(6,Y") has zero mean since
By [9(Y)] = 0 — bo(g) — (I, + Vabo(g)) M(6) "' [Vylog fo(Y)]
~ 0,

The Cramer-Rao bound is equivalent to the statement that the covariance matrix
Covy[U(6,Y)] is positive semi-definite! Indeed, it is straightforward to check that

CovplU(0,Y)] = Covy[U(0,Y)]

= Yy(g) — bo(g)ba(g)’
) — (I, + Vobe(g)) M ()" (I, + Vbs(g))".

Efficient estimators
A finite variance unbiased estimator g : R¥ — RP is an efficient estimator if it
achieves the Cramer-Rao bound, namely

Se(g) = M), 6eco.

Efficiency is meaningless for unbiased estimators!

Lemma 5.2 Assume that the assumptions of Theorem 5.1 hold. A regular esti-
mator that is also efficient satisfies the relations

g(y) — 0= M(0)'Vylog fo(y) F —ae. onS
for each 6 on ©. Conversely, any estimator g : R¥ — RP which satisfies
g(y) — 0= M) 'Vylog fo(y) F —ae. onS
on O is an efficient regular estimator.
As an immediate corollary we have the following.

Corollary 5.1 Assume that the assumptions of Theorem 5.1 hold. If an efficient
regular estimator g : R¥ — RP exists, it is essentially unique on S in the sense
that if g, g, : R* — RP are two efficient regular estimators, then g;(y) = g2(y)
F-ae. onS.
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6 Cramer-Rao bounds for exponential families

Assume the family {Fp, § € ©} to be an exponential family (with respect to F')
with density functions of the form

foly) = C(0)q(y)eR KW _qe.

for every 6 in © with Borel mappings C : © - R, Q : © - R%, ¢ : RF¥ = R,
and K : R¥ — RY. Conditions (CR1)-(CR8) can now be expressed more simply
as follows:

Note that fp(y) > 0 if and only if ¢(y) > 0, whence for each 6 in ©,

{y eR": fy(y) >0} = {y eR": ¢q(y) >0}

and (CR2b) holds.
Next, observe that here

0 0 , i=1,...,p
08 C0) + 2 QUK. g

0

3) a6,

upon assuming the existence of the various derivatives. Therefore, (CR3) is equiv-
alent to the differentiability of the mappings C' : © — R, and Q) : © — R It
follows that (CR4) is equivalent to

Ey [|[K(Y))?] <00, £=1,....,p.

Furthermore, the regularity condition (CRS) is easily seen to be equivalent to

0 ! 0 0, € ©
4) (89iQ<9)) Ey [K(Y)] = _801» log C'(6), i=1....p
Combining (3) and (4) we get
o) 0 ' =1,...
&) a0, log fo(y) = (86iQ(9)> (K(y) —E [K(Y)]), ' Y c S,p

It is now straightforward to see that

0
00,
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The regularity of the estimator g : R — RP? can be expressed as

(04 0(0)
= B |(0¥) - B V) (7.00)) K(¥))
) 7 zglé.é. , D

The case p =1 withg =1
Under these conditions K : R — is a bone fide estimator of # on the basis of Y. It
is easy to check that this estimator satisfies the Crameer-Rao bound with equality.
This is equivalent to showing that

K(y) -0
d

®) = by(K)+ (1 + @bQ(K)) M(@)‘ld% log fo(y) F —a.e.onS

7 The i.i.d. case

In many situations the data to be used for estimating the parameter 6 is obtained by
collecting i.i.d. samples from the underlying distribution. Formally, let { Fp, 0 €
©} denote the usual collection of probability distributions on R*. With positive
integer n, let Y |,..., Y, be i.id. R*-valued rvs, each distributed according to F}
under [Py. Thus, for each 6 in © we have

Py[Y1€By,....Y, € B, =][[Ps[Y:€ B}, Bi,... B, €BR

i=1
Let F(,(n) denote the corresponding probability distributions on R, namely
Fe(n)(yh"'?yn) = PQ[Ylsylu"'vYngyn]
= = HPO[Yz‘ <y,
i—1

y; € R
1=1,...,n

©) = =1 Fw)
=1



7 THEILI1LD. CASE 16

Hereditary properties
The following facts are easily shown.

1. The family {Fg(”), 0 € ©} is never complete when n > 2 even if the family
{Fy, 6 € O} is complete;

2. If the family {Fp, 0 € O} is absolutely continuous with respect to the
distribution ' on R* with density functions {fs, € ©}, then family
{F(,(n), 6 € O} is also absolutely continuous but with respect to the dis-
tribution £ on R™* given by

n

FO(y,,..y,) =[] Fy),

=1

y, € RF
1=1,...,n

For each ¢ in ©, he corresponding density function fg(n) :R™ — R, is
given by

n

F %) =[] fw),

=1

y; € R
1=1,...,n.

3. Assume the family {F}p, 6 € O} to be an exponential family (with respect
to F') with density functions of the form

foly) = C(0)q(y)e? KW F —ae.

for every 6 in © with Borel mappings C : © — R, @ : © — R, ¢ :
R* — R, and K : R — RY. Then, the family {F,", § € O} is also an
exponential family (with respect to F()) with density functions of the form

" n(n KOy, n
Iy ) = COP ™ (g, .y, ) QO KOGl ) g

for each 6 in ©, where

n - yz ERk
q( )(y177yn):Hq(yz)7 j = n
i=1 T
and "
k
() _ | v €R
K (y17~--7yn>_ZK(yz)7 izl,...,n

i=1
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4. Assuming (CR1), if the family {Fy, 6 € O} satisfies Conditions (CR2)-
(CRS) (with respect to [), then the family {Fg(n), 0 € ©} also satisfies
Conditions (CR2)—(CR5) (with respect to F'), and the Fisher information
matrices are related through the relation

M™ () =nM(9), 6¢cO.

8 Asymptotic theory — Types of estimators

We are often interested in situations where the parameter 6 is estimated on the
basis of multiple R*-valued samples, say Y1, ...,Y, for n large. The most com-
mon situation is that where the incoming observations form a sequence {Y ,,, n =
1,2,...} of i.i.d. R*-valued rvs (as described earlier). However, in some applica-
tions the variates {Y,,, n = 1,2,...} may be correlated, e.g., the rvs {Y,,, n =
1,2,...} form a Markov chain.

In general, for eachn = 1,2, ..., let g,, : R" — R¥ be an estimator for 6 on
the basis of the R*-valued observations Y1, ..., Y ,. We shall write
Y,
Y™ = |, n=12,...
Y,

The estimators {g,, n = 1,2,...} are (weakly) consistent at 0 (in ©) if the
rvs {g.(Y ™), n.=1,2,...} converge in probability to # under Py, i.e., for every
e >0,

lim Py [[lg.(¥™) — 0] > <] =0

The estimators {g,, n = 1,2,...} are (strongly) consistent at 0 (in ©) if the
vs {g, (Y ™), n =1,2,...} converge as. to # under Py, i.e.,

lim g,(Y™) =60 Py—as.

n—o0

As expected, strong consistency implies (weak) consistency.
The estimators {g,, n = 1,2,...} are asymptotically normal at 0 (in ©) if
there exists a p X p positive semi-definite matrix () with the property that

Jn <gn(Y(”)) - 9) =, N(0,,%(0))
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The estimators {g,, n = 1,2,...} are asymptotically unbiased at 6 (in ©) if
foreachn = 1,2, ..., the estimator is a finite mean estimator and

lim E, [gn(YW))] — 9.

n—o0

This is equivalent to
lim by(gn) = 0.
n—oo

Assume that for each n = 1,2, ..., the family of distributions {F(,("), 0 €
©} satisfies the appropriate conditions (CR2)—(CRS5). The estimators {g,, n =
1,2,...} are asymptotically efficient at 0 (in ©) if

lim (Sg(gn) — M™(0)™!) = Opyp, 0€0

provided the Fisher information matrices {M™(0), n = 1,2,...} are invertible
for each 0 in ©.

9 Maximum likelihood estimation methods

Assume (CR2a) to hold. A Borel mapping gy, : R¥ — O is called a maximum
likelihood estimator of 6 on the basis of Y if

ngL('!/)(?/) = max (f@(y), 0 c @), Y < R”.

This definition implicitly assumes that at the observation point y, the supremum

sup (fo(y), 0 € ©)

is indeed achieved at some point in ©. Note that (i) maximum likelihood estima-
tors may not exist or (i1) may not be unique. Often these problems are handled by
altering the selection of the density functions { fy, § € ©}.

ML equation
Note that the maximum likelihood estimator of # on the basis of Y can equiva-
lently be defined by

10g four(y)(y) = max (log fy(y), 0 € ©), yeRF

under the convention log(0) = —oo. This equation is known as the maximum
likelihood equation.
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This observation leads to the following characterization: Assume Int(©) to
be non-empty and that condition (CR2) holds. Also assume that condition (CR3)
holds for all # in Int(©) (rather than for all § in ©). Then

Volog fo(y) =0, yes
O0=gML(Y)
provided
guL(y) € Int(O).

When a sufficient statistics exists, the ML estimates can always expressed in
terms of it. This is a consequence of the Factorization Theorem.

Theorem 9.1 Assume that Condition (CR2a) holds and that for each y in S, the
ML estimate gy, (y) exists. If there exists a sufficient statistic T' : R — RY for
the family {Fy, 0 € O}, then there exists a Borel mapping Gy, : R? — RPsuch
that

oun(y) = GuL(T(y)) F —a.e.onS.

ML estimators and efficiency
There are relationships between efficiency and ML estimators.

Theorem 9.2 Assume Conditions (CR1)—(CRS5) to hold. Assume further that for
each 0 in O the Fisher information matrix M () is invertible. Assume further that
for each y in S, the ML estimate g\, (y) exists. Then every regular estimator
g : R¥ — RP which achieves the generalized Cramér-Rao bound must necessarily
satisty the equality

9(y) = guL(y) + by (y)(9) F — aeon S.

Corollary 9.1 Under the assumptions of Theorem 9.2, if the regular estimator
g : R¥ — RP is efficient, then it must necessarily be an ML estimator.

Asymptotic theory for ML estimators
The result given next assumes the availability of i.i.d. samples
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Theorem 9.3 Assume Conditions (CR1)—(CRS8) to hold. Foreachn = 1,2, ...,
assume that for each y™ in S”, the ML estimate gmML(y(")) exists. Then the
following statements hold.
(i) The ML estimators {g,u1, n = 1,2,...} are strongly consistent, i.e., for
each § in ©,
nlggo G (Y™) =0 Py — as.

(ii) The ML estimators {g,m1, n = 1,2,...} are asymptotically normal, i.e.,
for each 0 in ©,

\/ﬁ <9nML(Y(n)) - 9) =n N(Op’ M(Q)_l

under Py provided the Fisher information matrix is invertible.



