ESTIMATION AND DETECTION THEORY

HOMEWORK # 1:

Please work out the **ten** (10) problems stated below – HVP refers to the text: H. Vincent Poor, An Introduction to Signal Detection and Estimation (Second Edition), Springer Texts in Electrical Engineering Springer, New York (NY), 2010. With this in mind, Exercise **II.2** (HVP) refers to Exercise 2 for Chapter II of HVP. Exercises are located at the end of each chapter.

Show work and explain reasoning.

1. _

Solve Exercise **II.1** (HVP).

2. ____

Solve Part (a) of Exercise **II.2** (HVP).

3. _____

Solve Part (a) of Exercise **II.3** (HVP)

A definition _

Let I denote an interval of \mathbb{R} , not necessarily finite, closed or open. A function $g: I \to \mathbb{R}$ is a *concave* function if for arbitrary x_0 and x_1 in I, it holds that

$$(1-\lambda)g(x_0) + \lambda g(x_1) \le g((1-\lambda)x_0 + \lambda x_1) \tag{1.1}$$

for each λ in [0, 1].

4. _____

Let I denote an interval of \mathbb{R} , not necessarily finite, closed or open, and let A be an arbitrary index set. For each α in A, let $f_{\alpha} : I \to \mathbb{R}$ be a concave function. With the function $g : I \to \mathbb{R}$ defined by

$$g(x) = \inf \left(f_{\alpha}(x) : \alpha \in A \right), \quad x \in I$$

show that the mapping $g: I \to \mathbb{R}$ is concave.

5. _____

Let I be an open interval, say (a, b) with a < b in \mathbb{R} . Show that a concave mapping $g: I \to \mathbb{R}$ is necessarily continuous on I **HINT**: Use the definition (1.1).

ENEE 621/SPRING 2016

6. _____

Let I be an interval which is *open*, say of the form [a, b], (a, b] or [a, b) with a < b in \mathbb{R} . Is it still true that a concave mapping $g : I \to \mathbb{R}$ is necessarily continuous on I? Either give a proof or exhibit a counterexample.

7. ____

Solve Part (a) of Exercise **II.4** (HVP).

8. _____

Consider the binary hypothesis testing problem

$$\begin{array}{ll} H_1: \quad \boldsymbol{Y} \sim F_1 \\ H_0: \quad \boldsymbol{Y} \sim F_0. \end{array}$$

where F_0 is a discrete distribution uniform on $\{0, 1\}$, and F_1 is uniform on the interval (0, 1). Derive the test that minimizes the probability of error. Assume an arbitrary prior p in (0, 1).

9. ____

You are being told that an observation Y can be characterized as

$$\begin{aligned} H_1 : \quad \mathbf{Y} \sim Z^2 \\ H_0 : \quad \mathbf{Y} \sim e^Z \end{aligned}$$

where $Z \sim N(m, \sigma^2)$. Can this situation be formulated as a binary hypothesis testing problem? Explain. In the affirmative specify F_0 and F_1 .

10. ____

A rv Z is said to be Rayleigh distributed with parameter $\sigma^2 > 0$ if its probability distribution F_{σ^2} admits a probability density function $f_{\sigma^2} : \mathbb{R} \to \mathbb{R}_+$ given by

$$f_{\sigma^2}(z) = \begin{cases} 0 & \text{if } z < 0\\ \\ \frac{z}{\sigma^2} e^{-\frac{z^2}{2\sigma^2}} & \text{if } z \ge 0. \end{cases}$$

What are the likelihood ratio tests for the binary hypothesis testing problem

$$\begin{array}{ll} H_1: & Y \sim F_{\sigma_1^2} \\ H_0: & Y \sim F_{\sigma_0^2} \end{array}$$

with $\sigma_0^2 \neq \sigma_1^2$, both strictly positive?