$\begin{array}{c} {\rm ENEE~621} \\ {\rm FALL~2015} \\ {\rm DETECTION~AND~ESTIMATION~THEORY} \end{array}$

TEST # 1:

Please work out the four (4) attached problems. Show work on provided space and explain reasoning; box or circle your final answers.
Please write your full name and SID in the space provided below! Thank you for your cooperation.
Problem #1
Problem #2
Problem #3
Problem #4
Total
NAME/SID:

ENEE 621/SPRING 2016

1.

An \mathbb{R}_+ -valued rv Y is said to exponentially distributed with parameter $\alpha > 0$, written $Y \sim \text{Exp}(\alpha)$, if

$$\mathbb{P}\left[Y \le y\right] = 1 - e^{-\alpha y^+}, \quad y \in \mathbb{R}$$

with $y^+ = \max(0, y)$. Consider now he simple binary hypothesis testing problem

$$H_1: Y \sim \text{Exp}(\alpha_1)$$

 $H_0: Y \sim \text{Exp}(\alpha_0)$

with $0 < \alpha_0 < \alpha_1$.

- **1.a.** For each $\eta \geq 0$, explicitly describe the test $d_{\eta} : \mathbb{R} \to \{0,1\}$. In particular what is the set $C(d_{\eta})$ where the null-hypothesis H_0 is accepted? (6 pts.).
- **1.b.** For each $\eta \geq 0$, compute the probability $P_F(d_{\eta})$ of false alarm and the probability $P_F(d_{\eta})$ of detection under the test $d_{\eta} : \mathbb{R} \to \{0,1\}$ (8 pts.).
- **1.c.** Compute the Bayesian cost $V:[0,1] \to \mathbb{R}$ when using the probability of error criterion (10 pts.).
- 1.d. Find the ROC curve in explicit form (6 pts.).

ANSWER:

${\tt ENEE~621/SPRING~2016}$

2		
2.a.		
(4 pts.) (6 pts.).		
2.b. (6 pts.).		
2.c.		
(10 pts.).		

ANSWER:

3.a. 3.b. (5 pts.). 3.c. (5 pts.).

ANSWER:

ENEE $621/\text{SPRING}\ 2016$

${\bf ENEE~621/SPRING~2016}$

```
#4.
4.a.
(10 pts.).
4.b.
(10 pts.).
4.c.
(10 pts.).
```

ANSWER: