ENEE 621
SPRING 2016
ESTIMATION AND DETECTION THEORY
ANSWER KEY TO TEST \# 2:
1.
1.a. Consider a Borel mapping $\psi: \mathbb{R} \rightarrow$ such that $\mathbb{E}_{\theta}[|\psi(Y)|]<\infty$ for each $\theta=0,1, \ldots$ - This condition is always satisfied since $F_{\theta}$ has finite support. The conditions

$$
\mathbb{E}_{\theta}[\psi(Y)]=0, \quad \theta=0,1, \ldots
$$

read

$$
\frac{1}{2 \theta+1} \sum_{y=-\theta}^{\theta} \psi(y)=0, \quad \theta=0,1, \ldots
$$

or equivalently,

$$
\begin{equation*}
\sum_{y=-\theta}^{\theta} \psi(y)=0, \quad \theta=0,1, \ldots \tag{1.1}
\end{equation*}
$$

It follows that $\psi(0)=0$ [Just take $\theta=0$ above]. With $\theta=0,1, \ldots$, use (1.1) with $\theta$ and $\theta+1$ to conclude that

$$
\psi(-(\theta+1))+\psi(\theta+1)=0
$$

The family $\left\{F_{\theta}, \theta=0,1, \ldots\right\}$ is therefore not complete - Just take $\psi(y)=y$ (as expected!) 1.b. There are several ways to show that the statistic $T: \mathbb{R} \rightarrow \mathbb{R}$ is sufficient.

It suffices to note that

$$
\mathbb{P}_{\theta}[Y=y]=h(\theta ; T(y)) q(y), \quad y=0, \pm 1, \ldots
$$

with

$$
h(t ; \theta)=\mathbf{1}[t \leq \theta] \cdot \frac{1}{2 \theta+1}, \quad t=0,1, \ldots
$$

and

$$
q(y)=1, \quad y=0, \pm 1, \ldots
$$

The sufficiency of the statistic $T: \mathbb{R} \rightarrow \mathbb{R}$ follows by the Factorization Theorem.

A direct calculation proceeds as follows: Fix $\theta=0,1, \ldots$ With $t=0$ and $y=0, \pm 1, \ldots$, we have

$$
\mathbb{P}_{\theta}[T(Y)=0]=\mathbb{P}_{\theta}[Y=0]=\frac{1}{2 \theta+1}
$$

and

$$
\begin{align*}
\mathbb{P}_{\theta}[Y=y \mid T(Y)=0] & =\frac{\mathbb{P}_{\theta}[Y=y, T(Y)=0]}{\mathbb{P}_{\theta}[T(Y)=0]} \\
& =\delta(0, y) \cdot \frac{\mathbb{P}_{\theta}[Y=0]}{\mathbb{P}_{\theta}[T(Y)=0]} \\
& =\delta(0, y) \tag{1.2}
\end{align*}
$$

It is obvious that

$$
\mathbb{P}_{\theta}[Y \in B \mid T(Y)=0]=\mathbf{1}[0 \in B], \quad B \in \mathcal{B}(\mathbb{R})
$$

regardless of $\theta$ and it is appropriate to take

$$
\gamma(B ; 0)=\mathbf{1}[0 \in B], \quad B \in \mathcal{B}(\mathbb{R})
$$

On the other hand, with $t=1,2, \ldots, \theta$, and $y= \pm 1, \pm 2, \ldots$, it holds that

$$
\mathbb{P}_{\theta}[T(Y)=t]=\mathbb{P}_{\theta}[Y=t]+\mathbb{P}_{\theta}[Y=-t]=\frac{2}{2 \theta+1}
$$

while

$$
\begin{align*}
\mathbb{P}_{\theta}[Y=y \mid T(Y)=t] & =\frac{\mathbb{P}_{\theta}[Y=y, T(Y)=t]}{\mathbb{P}_{\theta}[T(Y)=t]} \\
& =\delta(t ;|y|) \cdot \frac{\mathbb{P}_{\theta}[Y=y]}{\mathbb{P}_{\theta}[T(Y)=t]} \\
& =\delta(t ;|y|) \cdot \frac{\frac{1}{2 \theta+1}}{\frac{2}{2 \theta+1}} \\
& =\frac{1}{2} \cdot \delta(t ;|y|) \tag{1.3}
\end{align*}
$$

In conclusion, for $t=1, \ldots, \theta$, the conditional distribution of $Y$ given $T(Y)=t$ under $\mathbb{P}_{\theta}$ is the uniform distribution on the set $\{-t, t\}$. As customary, this conditional distribution for all other values of $t$ (i.e., those not in the support $\{0,1, \ldots, \theta\}$ of $T(Y)$ ) can be selected arbitrarily. Here we select it also to be the uniform distribution on the set $\{-t, t\}$. Therefore, in establishing that $T: \mathbb{R} \rightarrow \mathbb{R}$ is a sufficient statistic, it is appropriate to take

$$
\gamma(B ; t)=\frac{1}{2} \mathbf{1}[-t \in B]+\frac{1}{2} \mathbf{1}[t \in B], \quad B \in \mathcal{B}(\mathbb{R})
$$

1.c. Consider a Borel mapping $\psi: \mathbb{R} \rightarrow$ such that $\mathbb{E}_{\theta}[|\psi(T(Y))|]<\infty$ for each $\theta=$ $0,1, \ldots-$ This condition is always satisfied since $F_{\theta}$ has finite support. The conditions

$$
\mathbb{E}_{\theta}[\psi(T(Y))]=0, \quad \theta=0,1, \ldots
$$

read

$$
\frac{1}{2 \theta+1} \sum_{y=-\theta}^{\theta} \psi(|y|)=0, \quad \theta=0,1, \ldots
$$

or equivalently,

$$
\begin{equation*}
\psi(0)+2 \sum_{y=1}^{\theta} \psi(y)=0, \quad \theta=0,1, \ldots \tag{1.4}
\end{equation*}
$$

Taking $\theta=0$ in (1.4) we obtain $\psi(0)=0$, and (1.4) becomes

$$
\begin{equation*}
\sum_{y=1}^{\theta} \psi(y)=0, \quad \theta=0,1, \ldots \tag{1.5}
\end{equation*}
$$

It is now plain that

$$
\psi(y)=0, \quad y=0,1,2, \ldots
$$

so that

$$
\mathbb{P}_{\theta}[\psi(|Y|)=0]=1, \quad \theta=0,1, \ldots
$$

The statistic $T: \mathbb{R} \rightarrow \mathbb{R}$ is indeed a complete sufficient statistic for the family $\left\{F_{\theta}, \theta=\right.$ $0,1, \ldots\}$.
1.d. A Borel mapping $g: \mathbb{R} \rightarrow \mathbb{R}$ is an unbiased estimator if $\mathbb{E}_{\theta}[|g(Y)|]<\infty$ for every $\theta=0,1, \ldots$ - This condition is always satisfied since $F_{\theta}$ has finite support, and

$$
\mathbb{E}_{\theta}[g(Y)]=\theta, \quad \theta=0,1, \ldots
$$

This last condition is equivalent to

$$
\begin{equation*}
\sum_{y=-\theta}^{\theta} g(y)=\theta(2 \theta+1), \quad \theta=0,1, \ldots \tag{1.6}
\end{equation*}
$$

Take $\theta=0$ in (1.6) to obtain $g(0)=0$, and (1.6) now becomes

$$
\begin{equation*}
g(0)=0, \quad \sum_{y=1}^{\theta}(g(-y)+g(y))=\theta(2 \theta+1), \quad \theta=1,2, \ldots \tag{1.7}
\end{equation*}
$$

It follows that

$$
g(-\theta)+g(\theta)=\theta(2 \theta+1)-(\theta-1)(2 \theta-1), \quad \theta=1,2, \ldots
$$

and combining we get

$$
g(0)=0, g(-y)+g(y)=4 y-1, \quad y=1,2, \ldots
$$

1.e. For every $\theta=0,1, \ldots$, note that

$$
\begin{align*}
\widehat{g}(t) & =\mathbb{E}_{\theta}[g(Y) \mid T(Y)=t] \\
& = \begin{cases}g(0) & \text { if } t=0 \\
\frac{1}{2}(g(-t)+g(t)) & \text { if } t=1,2, \ldots\end{cases} \tag{1.8}
\end{align*}
$$

with the adopted selection of $\gamma: \mathcal{B}(\mathbb{R}) \times \mathbb{R} \rightarrow[0,1]$.
1.f. Finally, if $g: \mathbb{R} \rightarrow \mathbb{R}$ is an unbiased estimator, then by the Rao-Blackwell Theorem the estimator $\widehat{g} \circ T: \mathbb{R} \rightarrow \mathbb{R}$ is is also an unbiased estimator with $\widehat{g}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\widehat{g}(t)= \begin{cases}g(0) & \text { if } t=0  \tag{1.9}\\ \frac{1}{2}(g(-t)+g(t)) & \text { if } t \neq 0\end{cases}
$$

But by Part d, the lack of bias for the estimator $g: \mathbb{R} \rightarrow \mathbb{R}$ requires that the conditions

$$
g(0)=0, g(-t)+g(t)=4 t-1, \quad t=1,2, \ldots
$$

hold, in which case

$$
\widehat{g}(t)= \begin{cases}0 & \text { if } t=0  \tag{1.10}\\ \frac{1}{2}(4 t-1) & \text { if } t \neq 0\end{cases}
$$

The estimator $\widehat{g} \circ T: \mathbb{R} \rightarrow \mathbb{R}$ is therefore MVUE. Concretely,

$$
(\widehat{g} \circ T)(y)= \begin{cases}0 & \text { if } y=0 \\ \frac{1}{2}(4|y|-1) & \text { if } y \neq 0\end{cases}
$$

It is essentially the only MVUE as a consequence of the complete sufficiency of the statistics $T: \mathbb{R} \rightarrow \mathbb{R}$. For the particular situation at hand, it is also a direct consequence of Parts $\mathbf{d}$ and $\mathbf{e}$.
2.
2.a. With the usual notation, for each $y=0,1, \ldots$, we have

$$
\begin{align*}
f_{\vartheta \mid Y}(t \mid y) & =\frac{\mathbb{P}[Y=y \mid \vartheta=t] f_{\vartheta}(t)}{\mathbb{P}[Y=y]} \\
& =\frac{(1-t) t^{y}(r+1) t^{r}}{\mathbb{P}[Y=y]} \\
& =\frac{(r+1)(1-t) t^{r+y}}{\mathbb{P}[Y=y]}, \quad 0 \leq t \leq 1 \tag{1.11}
\end{align*}
$$

with

$$
\begin{align*}
\mathbb{P}[Y=y] & =\int_{0}^{1}(1-t) t^{y}(r+1) t^{r} d t \\
& =\frac{r+1}{r+y+1}-\frac{r+1}{r+y+2} \\
& =\frac{r+1}{(r+y+1)(r+y+2)} \tag{1.12}
\end{align*}
$$

Combining, we conclude that

$$
\begin{align*}
f_{\vartheta \mid Y}(t \mid y) & =\frac{(r+1)(1-t) t^{r+y}}{\mathbb{P}[Y=y]} \\
& =(r+1)(1-t) t^{r+y} \cdot \frac{(r+y+1)(r+y+2)}{r+1} \\
& =(r+y+1)(r+y+2)(1-t) t^{r+y} \tag{1.13}
\end{align*}
$$

on the range $0<t<1$.
2.b. Fix $y=0,1, \ldots$. With $0<t<1$, we note that

$$
\log f_{\vartheta \mid Y}(t \mid y)=\log (r+y+1)(r+y+2)+\log (1-t)+(r+y) \log t
$$

so that

$$
\frac{\partial}{\partial t} \log f_{\vartheta \mid Y}(t \mid y)=-\frac{1}{1-t}+(r+y) \frac{1}{t}
$$

The solution to the MAP equation

$$
\frac{\partial}{\partial t} \log f_{\vartheta \mid Y}(t \mid y)=0
$$

is $\frac{r+y}{r+y+1}$, and the MAP estimator $g_{\mathrm{MAP}}: \mathbb{R} \rightarrow \mathbb{R}$ can be defined by

$$
g_{\mathrm{MAP}}(y)=\frac{r+y^{+}}{r+y^{+}+1}, \quad y \in \mathbb{R}
$$

Here (and elsewhere in this problem) we use $y^{+}$(instead of $y$ ) to have an expression that is well defined on the entirety of $\mathbb{R}$ rather than on $\mathbb{N}$ since we have defined estimators as Borel mappings $\mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$. This creates no contradiction with the alternate definition of the MAP estimator (found in many textbooks) as a mapping $g_{\mathrm{MAP}}: \mathbb{N} \rightarrow \mathbb{R}$ given by

$$
g_{\mathrm{MAP}}(y)=\frac{r+y}{r+y+1}, \quad y=0,1, \ldots
$$

because the rv $Y$ has its support on $\mathbb{N}$.
2.c. Fix $y=0,1, \ldots$. We have

$$
\begin{align*}
\mathbb{E}[\vartheta \mid Y=y] & =\int_{0}^{1} t f_{\vartheta \mid Y}(t \mid y) d t \\
& =\int_{0}^{1} t(r+y+1)(r+y+2)(1-t) t^{r+y} d t \\
& =(r+y+1)(r+y+2) \int_{0}^{1}(1-t) t^{r+y+1} d t \\
& =(r+y+1)(r+y+2)\left(\frac{1}{r+y+2}-\frac{1}{r+y+3}\right) \\
& =(r+y+1)(r+y+2) \cdot \frac{1}{(r+y+2)(r+y+3)} \\
& =\frac{r+y+1}{r+y+3} . \tag{1.14}
\end{align*}
$$

and the MMSE estimator $g_{\mathrm{MMSE}}: \mathbb{R} \rightarrow \mathbb{R}$ can be defined by

$$
g_{\mathrm{MMSE}}(y)=\frac{r+y^{+}+1}{r+y^{+}+3}, \quad y \in \mathbb{R}
$$

2.d. The ML estimator reduces to the MAP estimator when $\vartheta$ is uniformly distributed on $[0,1]$; this corresponds to $r=0$. Hence

$$
g_{\mathrm{ML}}(y)=\frac{y^{+}}{y^{+}+1}, \quad y \in \mathbb{R}
$$

Direct calculations are also possible.
3.
3.a. For each $\theta>0$, the distribution $F_{\theta}$ admits a probability density function with respect to Lebesgue measure given by

$$
f_{\theta}(y)=\theta h(y) H(y)^{\theta-1}, \quad y \in \mathbb{R}
$$

Therefore, for each $n=1,2, \ldots$, the probability distribution $F_{\theta}^{(n)}$ also admits a probability density function with respect to Lebesgue measure given by

$$
\begin{align*}
f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right) & =\prod_{i=1}^{n} f_{\theta}\left(y_{i}\right) \\
& =\theta^{n}\left(\prod_{i=1}^{n} h\left(y_{i}\right) H\left(y_{i}\right)^{\theta-1}\right) \\
& =\left(\prod_{i=1}^{n} h\left(y_{i}\right)\right) \cdot e^{n \log \theta+(\theta-1) \sum_{i=1}^{n} \log H\left(y_{i}\right)}, \quad i=1, \ldots, n \tag{1.15}
\end{align*}
$$

The condition $h(y)>0$ for each $y$ in $\mathbb{R}$ implies

$$
0<H(y)=\int_{\infty}^{y} h(t) d t<1, \quad y \in \mathbb{R}
$$

The family $\left\{F_{\theta}^{(n)}, \theta>0\right\}$ is an exponential family with

$$
C(\theta)=\theta^{n} \quad \text { and } \quad Q(\theta)=\theta-1, \quad \theta>0
$$

and

$$
q\left(y_{1}, \ldots, y_{n}\right)=\prod_{i=1}^{n} h\left(y_{i}\right) \quad \text { and } \quad K\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \log H\left(y_{i}\right), \quad i=1, \ldots, n
$$

3.b. As well known, if $Y$ is distributed according to $F_{\theta}$, then the rv $F_{\theta}(Y)$ ) is uniformly distributed on $(0,1)$. Here, $H(Y)^{\theta}=F_{\theta}(Y)$, hence the result $H(Y)^{\theta}={ }_{s t} U$ where $U$ is uniformly distributed on $(0,1)$ under $\mathbb{P}_{\theta}$. For each $p>0$ we conclude that

$$
\mathbb{E}_{\theta}\left[(\log H(Y))^{p}\right]=\theta^{-p} \mathbb{E}_{\theta}\left[\left(\log H(Y)^{\theta}\right)^{p}\right]=\theta^{-p} \mathbb{E}_{\theta}\left[(\log U)^{p}\right]
$$

It follows that $\mathbb{E}_{\theta}[\log H(Y)]=-\theta^{-1}$ and $\mathbb{E}_{\theta}\left[(\log H(Y))^{2}\right]=2 \theta^{-2}$.
3.c. Fix $n=1,2, \ldots$ and $\theta>0$. Since
we conclude that

$$
\frac{\partial}{\partial \theta} \log f_{\theta}(y)=\frac{1}{\theta}+\log H(y), \quad \begin{aligned}
& y \in \mathbb{R} \\
& \\
& \theta>0
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\mathbb{E}_{\theta}\left[\left|\frac{\partial}{\partial \theta} \log f_{\theta}(Y)\right|^{2}\right] & =\mathbb{E}_{\theta}\left[\left|\frac{1}{\theta}+\log H(Y)\right|^{2}\right] \\
& =\mathbb{E}_{\theta}\left[\frac{1}{\theta^{2}}+\frac{2}{\theta} \log H(Y)+(\log H(Y))^{2}\right] \\
& =\frac{1}{\theta^{2}}+\frac{2}{\theta}\left(\mathbb{E}_{\theta}[\log H(Y)]\right)+\mathbb{E}_{\theta}\left[(\log H(Y))^{2}\right] \\
& =\frac{1}{\theta^{2}}-\frac{2}{\theta^{2}}+\frac{2}{\theta^{2}}=\frac{1}{\theta^{2}} \tag{1.16}
\end{align*}
$$

by the calculations carried in Part b. Thus,

$$
M(\theta)=\theta^{-2}
$$

and

$$
M^{(n)}(\theta)=n \theta^{-2}
$$

A simpler argument would proceed as follows: It is also the case here that

$$
\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(y)=-\frac{1}{\theta^{2}}, \quad \begin{aligned}
& y \in \mathbb{R} \\
& \theta>0
\end{aligned}
$$

and the desired conclusion immediately follows.
3.d. To find the ML estimator, given the observation $y_{1}, \ldots, y_{n}$, consider the ML equation

$$
\frac{\partial}{\partial \theta} \log f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right)=0, \quad \theta>0
$$

or equivalently,

$$
\sum_{i=1}^{n}\left(\frac{1}{\theta}+\log H\left(y_{i}\right)\right)=0, \quad \theta>0
$$

Its unique solution $g_{\mathrm{ML}}\left(y_{1}, \ldots, y_{n}\right)$ is given by

$$
g_{\mathrm{ML}}\left(y_{1}, \ldots, y_{n}\right)=-\frac{n}{\sum_{i=1}^{n} \log H\left(y_{i}\right)}
$$

with $g_{\mathrm{ML}}\left(y_{1}, \ldots, y_{n}\right)>0$ as desired!
3.e. The ML estimator is strongly consistent (hence weakly consistent) since for each $\theta>0$, the SLLNs implies

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)=\mathbb{E}_{\theta}[\log H(Y)]=-\theta^{-1} \quad \mathbb{P}_{\theta}-\text { a.s. }
$$

so that

$$
\lim _{n \rightarrow \infty} g_{\mathrm{ML}}\left(Y_{1}, \ldots, Y_{n}\right)=-\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)\right)^{-1}=\theta \quad \mathbb{P}_{\theta}-\text { a.s. }
$$

3.f. Finally, we get

$$
\begin{aligned}
\sqrt{n}\left(g_{\mathrm{ML}}\left(Y_{1}, \ldots, Y_{n}\right)-\theta\right) & =-\sqrt{n} \cdot\left(\frac{n}{\sum_{i=1}^{n} \log H\left(Y_{i}\right)}+\theta\right) \\
& =-\sqrt{n} \cdot \frac{n+\theta \sum_{i=1}^{n} \log H\left(Y_{i}\right)}{\sum_{i=1}^{n} \log H\left(Y_{i}\right)} \\
& =-\sqrt{n} \cdot \frac{1+\theta\left(\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)\right)}{\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)} \\
& =-\sqrt{n} \cdot \frac{\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)-\left(-\theta^{-1}\right)}{\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)} \cdot \theta \\
& =-\frac{\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)-\left(-\theta^{-1}\right)\right)}{\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)} \cdot \theta
\end{aligned}
$$

The SLLNs for the rvs $\left\{\log H\left(Y_{i}\right), i=1,2, \ldots\right\}$ (under $\mathbb{P}_{\theta}$ ) yields

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)=-\theta^{-1} \quad \mathbb{P}_{\theta}-\text { a.s. }
$$

whereas the corresponding CLT (under $\mathbb{P}_{\theta}$ ) gives

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)-\left(-\theta^{-1}\right)\right) \Longrightarrow_{n} \sqrt{\operatorname{Var}_{\theta}[\log H(Y)]} Z
$$

where $Z$ is a standard (zero-mean unit-variance) Gaussian rv. We have

$$
\operatorname{Var}_{\theta}[\log H(Y)]=\mathbb{E}_{\theta}\left[(\log H(Y))^{2}\right]-\left(\mathbb{E}_{\theta}[\log H(Y)]\right)^{2}=\frac{2}{\theta^{2}}-\frac{1}{\theta^{2}}=\frac{1}{\theta^{2}}
$$

Therefore,

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} \log H\left(Y_{i}\right)-\left(-\theta^{-1}\right)\right) \Longrightarrow_{n} \theta^{-1} Z .
$$

Combining these facts and using standard facts concerning convergence of rvs, we conclude that under $\mathbb{P}_{\theta}$ we have

$$
\sqrt{n}\left(g_{\mathrm{ML}}\left(Y_{1}, \ldots, Y_{n}\right)-\theta\right) \Longrightarrow_{n}-\theta \cdot\left(\frac{\theta^{-1} Z}{-\theta^{-1}}\right)=\theta Z
$$

The limiting rv is indeed a Gaussian rv with zero mean and variance $\theta^{2}=M(\theta)^{-1}$ (as expected).

