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Notation and conventions

Throughout, we use R to denote the set of all real numbers, or equivalently, the
real line (−∞,∞). The set of all non-negative real numbers is denoted by R+.
The set of {0, 1, . . .} of all non-negative integers is denoted N. The notation N0

will be used for the set {1, 2, . . .} of all positive integers.

With p a positive integer, let Rp denote the pth cartesian product of R. An ele-
ment x in Rp, whose p components are denoted x1, . . . , xp, is always interpreted
as a column vector (x1, . . . , xp)

′ (with ′ denoting transpose).

With scalar m and σ2 > 0, the rv X is said to be a Gaussian rv with mean m
and variance σ2, written X ∼ N(m,σ2), if its cumulative probability distribution
function is given by

P [X ≤ x] =

∫ x

−∞

1√
2πσ2

e−
1
2( ξ−mσ )

2

dξ, x ∈ R.

The zero mean unit variance Gaussian rv is often referred to as a standard Gaus-
sian rv; its probability density function ϕ : R→ R+ is given by

ϕ(x) =
1√
2π
e−

x2

2 , x ∈ R, (1)

and its cumulative probability distribution function is then

Φ(x) =

∫ x

−∞
ϕ(t)dt, x ∈ R. (2)

Obviously, if X ∼ N(m,σ2) and Z ∼ N(0, 1), then X and m+σZ have the same
distribution.
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In the context of digital communications, it is customary to use theQ-function
Q : R+ → [0, 1] given by

Q(x) = 1− Φ(x) =

∫ ∞
x

ϕ(t)dt, x ≥ 0.



Part I

Detection Theory
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Chapter 1

Simple hypothesis testing

In the statistical hypothesis testing problem, a decision has to be made as to which
of several hypotheses (or states of nature) is the correct one. The states of nature
are encoded in a rvH and a decision has to be made on the basis of an observation
Y which is statistically related to H .

1.1 Motivating examples

Control process

A simple communication example

Testing means

1.2 The probabilistic model

The binary hypothesis testing problem is the simplest version of this problem
in that nature can be in either of two states, say H = 0 or H = 1 for sake
of concreteness. If F0 and F1 are probability distribution functions on Rk, this
situation is summarized by

H1 : Y ∼ F1

H0 : Y ∼ F0.
(1.1)
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The hypothesis H0 is called the null hypothesis and hypothesis H1 is referred to
as the non-null hypothesis or the alternative.

Probabilistically, the symbolic statement (1.1) is understood as follows: On
some probability triple (Ω,F ,P), consider the rvs H and Y defined on Ω which
take values in {0, 1} and Rk, respectively. The probability distribution functions
F0 and F1 then have the interpretation as conditional probability distribution of Y
given H = 0 and H = 1, respectively, namely

Fh(y) = P [Y ≤ y|H = h] ,
y ∈ Rk,
h = 0, 1.

The probability distribution of the rv H is specified by p in [0, 1] with

p = P [H = 1] = 1− P [H = 0] .

We refer to the pmf (1−p, p) on {0, 1}, or just to p, as the prior. This construction
is always possible.

Since

P [Y ≤ y,H = h] = P [Y ≤ y|H = h]P [H = h]

=


(1− p)F0(y) if h = 0, y ∈ Rk

pF1(y) if h = 1, y ∈ Rk,
(1.2)

then the law of total probability shows that

P [Y ≤ y] =
1∑

h=0

P [Y ≤ y|H = h]P [H = h]

= pF1(y) + (1− p)F0(y), y ∈ Rk. (1.3)

Thus, the conditional probability distributions of the observations given the hy-
pothesis and the probability distribution of H completely specify the joint distri-
bution of the rvs H and Y .

During the discussion, several assumptions will be enforced on the probability
distributions F0 and F1. The assumptions that will be most often encountered are
denoted by (A.1) and (A.2) for sake of convenience. They are stated and discussed
in some details below.

Condition (A.1) corresponds to the assumption of usual absolute continuity
that was used in Part II. The probability distributions F0 and F1 on Rk satisfy
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Condition (A.1) if they are both absolutely continuous with respect to some dis-
tribution F on Rk – In general F may not a probability distribution. Condition
(A.1) is equivalent to saying that there exist Borel mappings f0, f1 : Rk → R+

such that

Fh(y) =

∫ y
−∞

fh(η)dF (η),
y ∈ Rk,
h = 0, 1.

(1.4)

In some basic sense, this condition is hardly constraining since we can always
take F to be the average of the two probability distributions F0 and F1. i.e.,

F (y) ≡ 1

2
F0(y) +

1

2
F1(y), y ∈ Rk. (1.5)

in which case F is also a probability distribution. This choice for F is usually
not operationally convenient and therefore discarded. However, the most often
encountered situations arise when F is either Lebesgue measure on Rk or a count-
ing measure on some countable subset of Rk, in which case F is not a probability
distribution.

When F is Lebesgue measure on Rk, the Borel mappings f0, f1 : Rk →
R+ are just the probability density functions induced by F0 and F1 in the usual
sense. When F is counting measure on a countable subset S ⊆ Rk, then the Borel
mappings f0, f1 : Rk → R+ are best thought as probability mass functions (pdfs)
f 0 = {f0(y), y ∈ S} and f 1 = {f1(y), y ∈ S}, i.e.,

0 ≤ fh(y) ≤ 1,
y ∈ S,
h = 0, 1.

and ∑
y∈S

fh(y) = 1, h = 0, 1.

The condition (1.4) now takes the form

P [Y ∈ B|H = h] =
∑
η∈S∩B

fh(η),
B ∈ B(Rk)
h = 0, 1.

The second assumption of interest here is Condition (A.2) which asserts that
the probability distribution F1 is absolutely continuous with respect to the proba-
bility distribution F0. Under Condition (A.1), with the notation introduced earlier,
this is equivalent to requiring

f0(y) = 0 implies f1(y) = 0. (1.6)
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1.3 Admissible tests
An admissible decision rule (or test) is any Borel mapping d : Rk → {0, 1}. The
collection of all admissible rules is denoted by D. The measurability requirement
entering the definition of admissibility is imposed to guarantee that the mapping
d(Y ) : Ω→ {0, 1} : ω → d(Y (ω)) is indeed a rv, i. e., [ω ∈ Ω : d(Y (ω)) = h] is
an event in F for all h = 0, 1.

It is plain that every test d in D is completely specified by the Borel subset
C(d) defined by

C(d) ≡ {y ∈ Rk : d(y) = 0}. (1.7)

Conversely, any Borel measurable subset C of Rk uniquely determines an admis-
sible rule dC in D through

dC(y) =


1 if y /∈ C

0 if y ∈ C.

We note that C(dC) = C as expected.
Any admissible rule d in D induces two types of error: Upon observing Y ,

either H = 0 is true and d(Y ) = 1 or H = 1 is true and d(Y ) = 0. These two
possibilities are the so–called errors of the first and second type associated with
the decision rule d; they are quantified by

α(d) ≡ P [d(Y ) = 1|H = 0] (1.8)

and
β(d) ≡ P [d(Y ) = 0|H = 1] , (1.9)

respectively. The quantity α(d) is sometimes called the size of the test d. In radar
parlance, these probabilities are referred to as probabilities of false alarm and
miss, respectively, with alternate notation

PF (d) ≡ P [d(Y ) = 1|H = 0] (1.10)

and
PM(d) ≡ P [d(Y ) = 0|H = 1] . (1.11)

Throughout we shall use this terminology. Sometimes, it is convenient to consider
the so–called probability of detection given by

PD(d) ≡ P [d(Y ) = 1|H = 1] = 1− PM(d). (1.12)
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1.4 The Bayesian formulation
The Bayesian formulation assumes knowledge of the conditional distributions F1

and F0, and of the prior distribution p of the rv H .

The Bayesian optimization problem The cost incurred for making decisions is
quantified by the mapping C : {0, 1} × {0, 1} → R with the interpretation that

C(h, d) =

(
Cost incurred for deciding d

when H = h

)
, d, h = 0, 1.

As the sample ω in Ω is realized, the observation Y (ω) is recorded and the
use of the admissible rule d in D incurs a cost C(H(ω), d(Y (ω))). Although it
is tempting to seek to minimize this quantity, this is not possible. Indeed, the rv
Y is observed, whence d(Y ) is known once the test d has been specified, but
the state of nature H is not directly observable. Consequently, the value of the
cost C(H, d(Y )) is not available. To remedy to this difficulty, we introduce the
expected cost function J : D → R given by

J(d) ≡ E [C(H, d(Y ))] , d ∈ D.

The Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

This amounts to finding an admissible test d? in D such that

J(d?) ≤ J(d), d ∈ D. (1.13)

Any admissible test d? which satisfies (1.13) is called a Bayesian test, and the
value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (1.14)

is known as the Bayesian cost.

Representation results for the Bayesian cost J The solution to the Bayesian
problem PB is developed with the help of an auxiliary result concerning the form
of the Bayesian cost. This representation result will be useful in several places
and is given here for sake of easy reference.
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Fix d in D. Recall that the rvs H and d(Y ) are {0, 1}-valued rvs, and that the
events [d(Y ) = H] and [d(Y ) 6= H] form a partition of Ω, i. e.,

1 [d(Y ) = H] + 1 [d(Y ) 6= H] = 1 [Ω] = 1.

It readily follows that

C(H, d(Y )) = 1 [d(Y ) = H]C(H,H) + 1 [d(Y ) 6= H]C(H, 1−H)

= (1− 1 [d(Y ) 6= H])C(H,H) + 1 [d(Y ) 6= H]C(H, 1−H)

= C(H,H) + (C(H, 1−H)− C(H,H))1 [d(Y ) 6= H]

= C(H,H) + 1 [d(Y ) 6= H] ΓH (1.15)

as we introduce the relative costs Γ0 and Γ1 given by

Γh ≡ C(h, 1− h)− C(h, h), h = 0, 1.

Taking expectations on both sides of (1.15) we find

J(d) = E [C(H,H)] + E [1 [d(Y ) 6= H] ΓH ] .

This last relation points to the auxiliary expected cost function Ĵ : D → R defined
by

Ĵ(d) = E [1 [d(Y ) 6= H] ΓH ] , d ∈ D (1.16)

so that
J(d) = E [C(H,H)] + Ĵ(d), d ∈ D. (1.17)

The law of total probabilities gives

Ĵ(d)

= E [Γ01 [d(Y ) 6= 0]1 [H = 0] + Γ11 [d(Y ) 6= 1]1 [H = 1]]

= Γ0(1− p) · P [d(Y ) 6= 0|H = 0] + Γ1p · P [d(Y ) 6= 1|H = 1]

= Γ0(1− p) · P [d(Y ) = 1|H = 0] + Γ1p · P [d(Y ) = 0|H = 1] ,(1.18)

and direct substitution easily yields the following expressions.

Lemma 1.4.1 For any admissible rule d in D, the relations

Ĵ(d) = Γ0(1− p) · PF (d) + Γ1p · PM(d) (1.19)

and
J(d) = E [C(H,H)] + Γ0(1− p) · PF (d) + Γ1p · PM(d) (1.20)

hold.
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It is plain from these expressions that the Bayesian cost under a decision rule
is completely determined by its probabilities of false alarm and of miss. We have

Ĵ(d) = Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]

−Γ0(1− p) · P [d(Y ) = 0|H = 0] , d ∈ D. (1.21)

as an immediate consequence of (1.18).

1.5 Solving the Bayesian problem PB
It follows from (1.17) that solving PB is equivalent to solving the auxiliary prob-
lem P̂B where

P̂B : Minimize Ĵ(d) over d in D.

To solve this auxiliary problem P̂B, it will be necessary to assume that the
probability distributions F0 and F1 satisfy the absolute continuity condition (A1)
given earlier, namely that there exists a single distribution F on Rk with respect
to which both F0 and F1 are absolutely continuous. For any test d in D, we get

P [d(Y ) = 0|H = h] =

∫
C(d)

dFh(y)

=

∫
C(d)

fh(y)dF (y), h = 0, 1 (1.22)

with C(d) defined at (1.7). It is now easy to see from (1.21) that

Ĵ(d) = Γ0(1− p) +

∫
C(d)

h(y)dF (y) (1.23)

where the mapping h : Rk → R is given by

h(y) := Γ1p · f1(y)− Γ0(1− p) · f0(y), y ∈ Rk. (1.24)

Theorem 1.5.1 Assume the absolute continuity condition (A.1) to hold. Define
the Borel set C? by

C? ≡ {y ∈ Rk : h(y) < 0}
with h : Rk → R given by (1.24). The decision rule d? : Rk → {0, 1} given by

d?(y) =


1 if x /∈ C?

0 if x ∈ C?

(1.25)
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is admissible and solves the Problem P̂B, hence solves the Bayesian Problem PB.

Proof. The set C? is a Borel subset of Rk due to the fact that the functions
f0, f1 : Rk → R+ are themselves Borel measurable. The test d? is therefore an
admissible decision rule in D since C(d?) = C?. We now show that d? satisfies

Ĵ(d?) ≤ Ĵ(d), d ∈ D. (1.26)

Indeed, for every test d in D, we see from (1.23) that

Ĵ(d) = Γ0(1− p) +

∫
C(d)\C?

h(y)dF (y) +

∫
C(d)∩C?

h(y)dF (y)

and

Ĵ(d?) = Γ0(1− p) +

∫
C?\C(d)

h(y)dF (y) +

∫
C(d)∩C?

h(y)dF (y).

Therefore,

Ĵ(d)− Ĵ(d?) =

∫
C(d)\C?

h(y)dF (y) +

∫
C?\C(d)

(−h(y)) dF (y) ≥ 0

since ∫
C(d)\C?

h(y)dF (y) ≥ 0 and
∫
C?\C(d)

h(y)dF (y) ≤ 0

by the very definition of C?. The problem P̂B is therefore solved by the test d?

defined at (1.25).

The solution to the Bayesian problem is not unique: It should be plain that C?

could be replaced by
C?? ≡ {y ∈ Rk : h(y) ≤ 0}

(with corresponding test d??) without affecting the conclusion of optimality since∫
{y∈Rk: h(y)=0}

h(y)dF (y) = 0.

While it is true that J(d?) = J(d??), it is not necessarily the case that either of the
equalities PF (d?) = PF (d??) or PM(d?) = PM(d??) holds.
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1.6 Likelihood ratio tests
Assume that 0 < p < 1 to avoid trivial situations, and that the relative costs satisfy
the conditions

Γh > 0, h = 0, 1,

i.e., the cost of making an incorrect decision is greater than the cost of making a
correct decision. This is of course a most reasonable assumption which always
holds in applications. Under this condition, the Bayesian decision rule d? given in
Theorem 1.5.1 takes the equivalent form

d?(y) = 0 iff f1(y) <
Γ0(1− p)

Γ1p
f0(y). (1.27)

This suggests introducing the following class of admissible tests {dη, η ≥ 0}
where for each η ≥ 0, the mapping dη : Rk → {0, 1} is defined by

dη(y) = 0 iff f1(y) < ηf0(y). (1.28)

The Bayesian test d? described in Section 1.4 is such a test dη with

η ≡ Γ0(1− p)
Γ1p

.

It is plain from the definition (1.28) (with η = 0) that d0 is simply the test that
always selects the non-null hypothesis H = 1. On the other hand, substituting
η = ∞ in (1.28) will be problematic at observation points where f0(y) = 0.
However, by convention we shall interpret d∞ as the test that always selects the
the null hypothesis H = 0 – More on that later in Section 1.20.

Such tests take an even simpler form under the additional Condition (A.2) as
will be seen shortly. First, we note that (1.28) can be rewritten as

dη(y) = 0 if
f1(y)

f0(y)
< η whenever f0(y) > 0.

Taking our cue from this last statement, we define the likelihood ratio as any Borel
mapping L : Rk → R of the form

L(y) ≡


f1(y)

f0(y)
if f0(y) > 0

Λ(y) otherwise
(1.29)
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for some arbitrary Borel mapping Λ : Rk → R+. Different choices of this ar-
bitrary non-negative function produce different versions of the likelihood ratio
function.

Given a version of the likelihood ratio function in (1.29), we define the like-
lihood ratio test with threshold η ≥ 0 to be the admissible decision rule Lrtη :
Rk → {0, 1} given by

Lrtη(y) ≡


1 if L(y) ≥ η

0 if L(y) < η.
(1.30)

With
Bh =

{
y ∈ Rk : fh(y) = 0

}
, h = 0, 1,

we note that

P [f0(Y ) = 0|H = h] =

∫
B0

fh(y)dF (y), h = 0, 1. (1.31)

Under (A.2), as the inclusion B0 ⊆ B1 holds, we conclude that

P [f0(Y ) = 0|H = h] = 0, h = 0, 1.

For any value η of the threshold it is plain that the tests dη and Lrtη coincide
on the set {y ∈ Rk : f0(y) > 0} (while possibly disagreeing on the complement
B0). Thus, for each h = 0, 1, we find that

P [dη(Y ) = 0|H = h]

= P [dη(Y ) = 0, f0(Y ) > 0|H = h] + P [dη(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrtη(Y ) = 0, f0(Y ) > 0|H = h]

= P [Lrtη(Y ) = 0, f0(Y ) > 0|H = h] + P [Lrtη(Y ) = 0, f0(Y ) = 0|H = h]

= P [Lrtη(Y ) = 0|H = h] .

This discussion leads to the following fact.

Lemma 1.6.1 Assume the absolute continuity conditions (A.1)–(A.2) to hold.
For each η ≥ 0, the tests dη and Lrtη are equivalent in that they have identical
performance with PM(dη) = PM(Lrtη) and PF (dη) = PF (Lrtη).
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It follows from (1.20) that J(dη) = J(Lrtη) regardless of the cost functionC :
{0, 1} × {0, 1} → R. The same argument also shows that any two versions of the
likelihood ratio function will generate likelihood ratio tests which are equivalent.

Equipped with Lemma 1.6.1 we can now restate Theorem 1.5.1.

Theorem 1.6.1 Assume the absolute continuity conditions (A.1)–(A.2) to hold.
Whenever Γh > 0 for h = 0, 1, the Bayesian decision rule d? identified in Theo-
rem 2.1 is equivalent to the likelihood ratio test Lrtη? where

η? ≡ Γ0(1− p)
Γ1p

=
C(0, 1)− C(0, 0)

C(1, 0)− C(1, 1)
· 1− p

p
.

1.7 The probability of error criterion
A special case of great interest is obtained when the cost function C takes the
form

C(h, d) = 1 [h 6= d] , h, d = 0, 1.

The corresponding expected cost then reduces to the probability of making an
incorrect decision, namely the probability of error, and is given by

PE(d) ≡ P [d(Y ) 6= H] , d ∈ D.

We check that

Γh = C(h, 1− h)− C(h, h) = 1, h = 0, 1,

and the relation (1.20) becomes

PE(d) = (1− p) · PF (d) + p · PM(d)

= p+ (1− p) · PF (d)− p · PD(d), d ∈ D. (1.32)

For the probability of error criterion, the threshold η? appearing in Theorem 1.6.1
has the simpler form

η? =
1− p
p

.

The optimal decision rule d?, as described at (1.27), can now be rewritten as

d?(y) = 0 iff f1(y) <
1− p
p

f0(y). (1.33)
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The ML test In the uniform prior case, i.e., p = 1
2
, the Bayesian test (1.33)

becomes
d?(y) = 0 iff f1(y) < f0(y). (1.34)

In other words, the optimal decision is to select that hypothesis whose likelihood
is largest given the observation y. We refer to this strategy as the Maximum Like-
lihood (ML) test.

The MAP computer Finally, (1.33) can also be rewritten as

d?(y) = 0 iff P [H = 1|Y = y] < P [H = 0|Y = y] (1.35)

since for each y in Rk, we have

P [H = 1|Y = y] =
pf1(y)

pf1(y) + (1− p)f0(y)

and

P [H = 0|Y = y] =
(1− p)f0(y)

pf1(y) + (1− p)f0(y)

by Bayes’ Theorem. For each h = 0, 1, the conditional probability P [H = h|Y = y]
is known as the posterior probability that H = h occurs given the observation y.
Put differently, the optimal test (1.35) compares these posterior probabilities given
the observation y, and selects the hypothesis with the largest posterior probability,
hence the terminology Maximum A Posteriori (MAP) computer.

1.8 The Gaussian case
Assume that the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ∼ N(m1,R1)
H0 : Y ∼ N(m0,R0)

where m1 and m0 are elements in Rk, and the k × k symmetric matrices R1

and R0 are positive definite (thus invertible). Throughout the pairs (m0,R0) and
(m1,R1) are distinct so that the probability density functions f0, f1 : Rk → R+

are distinct since

fh(y) =
1√

(2π)k detRh

e−
1
2

(y−mh)′R−1

h (y−mh),
y ∈ Rk

h = 0, 1.

Both conditions (A.1) and (A.2) obviously hold, and for each η > 0, the test dη
and Lrtη coincide.
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The likelihood ratio and the likelihood ratio tests For this example, the like-
lihood ratio function is given by

L(y) =

√
det(R0)

det(R1)
· e

1
2
Q(y), y ∈ Rk

where we have used the notation

Q(y) = (y −m0)′R−1
0 (y −m0)− (y −m1)′R−1

1 (y −m1).

Fix η > 0. By direct substitution, we conclude that

Lrtη(y) = 0 iff e
1
2
Q(y) <

√
η2 · detR1

detR0

,

and a simple logarithmic transformation yields

Lrtη(y) = 0 iff Q(y) < log

(
η2 detR1

detR0

)
.

The equal covariance case If the covariances are identical under both hypothe-
ses, i.e.,

R0 = R1 ≡ R,

withm1 6= m0, then

Q(y) = (y −m0)′R−1(y −m0)− (y −m1)′R−1(y −m1)

= 2y′R−1(m1 −m0)−
(
m′1R

−1m1 −m′0R−1m0

)
. (1.36)

The form of Lrtη simplifies even further to read

Lrtη(y) = 0 iff y′R−1∆m < τ(η)

where we have set

∆m ≡m1 −m0 (1.37)

and

τ(η) ≡ 1

2

(
m′1R

−1m1 −m′0R−1m0

)
+ log η. (1.38)
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Evaluating probabilities We will now evaluate the probabilities of false alarm
and miss under Lrtη. It is plain that

PF (Lrtη) = P [Lrtη(Y ) = 1|H = 0]

= P [L(Y ) ≥ η|H = 0]

= P
[
Y ′R−1∆m ≥ τ(η) | H = 0

]
(1.39)

and

PM(Lrtη) = P [Lrtη(Y ) = 0|H = 1]

= P [L(Y ) < η|H = 1]

= P
[
Y ′R−1∆m < τ(η) | H = 1

]
= 1− P

[
Y ′R−1∆m ≥ τ(η) | H = 1

]
. (1.40)

To carry out the calculations further, recall that for each h = 0, 1, given H =
h, the rv Y is conditionally Gaussian with mean vectormh and covariance matrix
R. Therefore, the scalar rv Y ′R−1∆m is also conditionally Gaussian with mean
and variance given by

E
[
Y ′R−1∆m|H = h

]
= m′hR

−1∆m

and

Var
[
Y ′R−1∆m|H = h

]
=

(
R−1∆m

)′
Cov [Y |H = h]

(
R−1∆m

)
=

(
R−1∆m

)′
R
(
R−1∆m

)
= ∆m′R−1∆m, (1.41)

respectively. In obtaining this last relation we have used the fact that

Y ′R−1∆m = (R−1∆m)′Y .

Consequently, for all h = 0, 1,

P
[
Y ′R−1∆m ≥ τ(η)|H = h

]
= P

[
m′hR

−1∆m+
√

∆m′R−1∆m · Z ≥ τ(η)
]

= P
[
Z ≥ τ(η)−m′hR−1∆m√

∆m′R−1∆m

]
(1.42)
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where Z ∼ N(0, 1).
For the sake of convenience, pose

d2 ≡ ∆m′R−1∆m, (1.43)

and note that

τ(η)−m′hR−1∆m =


log η − 1

2
d2 if h = 1

log η + 1
2
d2 if h = 0.

It is now clear that

PF (Lrtη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PM(Lrtη) = Φ

(
log η − 1

2
d2

d

)
.

We finally obtain

PD(Lrtη) = 1− Φ

(
log η − 1

2
d2

d

)
.

The ML test The ML test corresponds to η = 1, in which case these expressions
become

PF (dML) = 1− Φ

(
d

2

)
= Q

(
d

2

)
and

PM(dML) = Φ

(
−d

2

)
= Q

(
d

2

)
.

Therefore,

PE(dML) = (1− p)PF (dML) + pPM(dML) = Q

(
d

2

)
regardless of the prior p.
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1.9 The Bernoulli case
Consider now the binary hypothesis testing problem

H1 : Y ∼ Ber(a1)
H0 : Y ∼ Ber(a0)

with a1 < a0 in (0, 1). The case a0 < a1 is left as an exercise. Thus,

P [Y = 1|H = h] = ah = 1− P [Y = 0|H = h] , h = 0, 1

and Conditions (A.1) and (A.2) obviously hold with respect to counting measure
F on {0, 1}. The likelihood rate function is given by

L(y)

(
1− a1

1− a0

)1−y (
a1

a0

)y
, y ∈ R.

For each η > 0, the test dη takes the following form

dη(y) = 0 iff
(

1− a1

1− a0

)1−y

·
(
a1

a0

)y
< η

iff
(

1− a0

1− a1

· a1

a0

)y
< η

1− a0

1− a1

(1.44)

with y = 0, 1. Therefore,

PF (dη) = P [dη(Y ) = 1|H = 0]

= P

[(
1− a0

1− a1

· a1

a0

)Y
≥ η

1− a0

1− a1

∣∣∣H = 0

]

= P

[
Y = 1,

(
1− a0

1− a1

· a1

a0

)Y
≥ η

1− a0

1− a1

∣∣∣H = 0

]

+ P

[
Y = 0,

(
1− a0

1− a1

· a1

a0

)Y
≥ η

1− a0

1− a1

∣∣∣H = 0

]

= a01

[
η

1− a0

1− a1

≤ 1− a0

1− a1

· a1

a0

]
+ (1− a0)1

[
η

1− a0

1− a1

≤ 1

]
= a01

[
η ≤ a1

a0

]
+ (1− a0)1

[
η

1− a0

1− a1

≤ 1

]
= a01

[
η ≤ a1

a0

]
+ (1− a0)1

[
η ≤ 1− a1

1− a0

]
(1.45)
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Similarly, we get

PM(dη) = P [dη(Y ) = 0|H = 1]

= P

[(
1− a0

1− a1

· a1

a0

)Y
< η

1− a0

1− a1

∣∣∣H = 1

]

= P

[
Y = 1,

(
1− a0

1− a1

· a1

a0

)Y
< η

1− a0

1− a1

∣∣∣H = 1

]

+ P

[
Y = 0,

(
1− a0

1− a1

· a1

a0

)Y
< η

1− a0

1− a1

∣∣∣H = 1

]

= a11

[
1− a0

1− a1

· a1

a0

< η
1− a0

1− a1

]
+ (1− a1)1

[
1 < η

1− a0

1− a1

]
= a11

[
a1

a0

< η

]
+ (1− a1)1

[
1 < η

1− a0

1− a1

]
= a11

[
a1

a0

< η

]
+ (1− a1)1

[
1− a1

1− a0

< η

]
. (1.46)

1.10 Additional examples

We now present several examples where Conditions (A.1) or (A.2) fail. In all
cases we assume Γ0 > 0 and Γ1 > 0.

An example where absolute continuity (A.2) fails Here, the observation is the
scalar rv Y with

f0(y) =


1− | y | if |y| ≤ 1

0 otherwise
and f1(y) =


1
3

if −1 ≤ y ≤ 2

0 otherwise.

Condition (A.1) holds (with Lebesgue measure) but the absolute continuity
condition (A.2) is clearly not satisfied. However, simple substitution reveals that

h(y) = Γ1p · f1(y)− Γ0(1− p) · f0(y)
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=



0 if y < −1

1
3
Γ1p− Γ0(1− p)(1− |y|) if |y| ≤ 1

1
3
Γ1p if 1 < y ≤ 2

0 if 2 < y.

(1.47)

The Bayesian test d? is simply

d?(y) = 0 iff |y| < 1−
1
3
Γ1p

Γ0(1− p)
.

Another example where absolute continuity (A.2) fails Here, the observation
is again the scalar rv Y with

f0(y) =


1− | y | if |y| ≤ 1

0 otherwise
and f1(y) =


1
3

if 0 ≤ y ≤ 3

0 otherwise.

Condition (A.1) holds (with Lebesgue measure) but (A.2) fails. Simple substitu-
tion reveals that

h(y) = Γ1p · f1(y)− Γ0(1− p) · f0(y)

=



0 if y < −1

−Γ0(1− p)(1 + y) if −1 ≤ y ≤ 0

1
3
Γ1p− Γ0(1− p)(1− y) if 0 < y ≤ 1

1
3
Γ1p if 1 < y ≤ 3

0 if 3 < y,

(1.48)

and it is straightforward to check that the Bayesian test d? is simply

d?(y) = 0 iff
−1 < y ≤ 0

or

0 < y ≤ 1, y < 1−
1
3

Γ1p

Γ0(1−p) .
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Equivalently, d? can be described as

d?(y) = 0 iff y ∈

(
−1,

(
1− Γ1p

3Γ0(1− p)

)+
)
.

An example where both (A.1) and (A.2) fail Consider the binary hypothesis
testing problem

H1 : Y ∼ F1

H0 : Y ∼ F0.

where F0 is a discrete distribution uniform on {0, 1}, and F1 is uniform on the
interval (0, 1). Thus, F1 admits a probability density function f1 : R → R+ with
respect to Lebesgue measure given by

f1(y) =


1 if y ∈ (0, 1)

0 otherwise

and

P [Y = 0|H = 0] = P [Y = 1|H = 0] =
1

2
.

For each test d in D we recall that we have

Ĵ(d)

= Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]− Γ0(1− p) · P [d(Y ) = 0|H = 0]

with

P [d(Y ) = 0|H = 0] =


1
2

if 0 ∈ C(d), 1 /∈ C(d)
1
2

if 1 ∈ C(d), 0 /∈ C(d)
1 if 0 ∈ C(d), 1 ∈ C(d)
0 if 0 /∈ C(d), 1 /∈ C(d)

and

P [d(Y ) = 0|H = 1] =

∫
C(d)

f1(y)dy = |C(d) ∩ [0, 1]|.

Adding or deleting a finite number of points from C(d) will not affect the
value of P [d(Y ) = 0|H = 1], but it will change the value of P [d(Y ) = 0|H = 0].
Therefore, with C(d) given, modify it, if needed, by adding both points 0 and 1.
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If C ′ denotes this Borel subset of R, then C ′ = C(d) ∪ {0, 1}; if d′ denotes the
corresponding test, then C(d′) = C ′. Obviously

P [d(Y ) = 0|H = 1] = P [d′(Y ) = 0|H = 1] = |C(d′) ∩ [0, 1]|

since |C(d′) ∩ [0, 1]| = |C(d) ∩ [0, 1]|, while

P [d(Y ) = 0|H = 0] ≤ P [d′(Y ) = 0|H = 0] = 1.

We can now conclude that

Ĵ(d)

= Γ0(1− p) + Γ1p · P [d(Y ) = 0|H = 1]− Γ0(1− p) · P [d(Y ) = 0|H = 0]

≥ Γ0(1− p) + Γ1p · P [d′(Y ) = 0|H = 1]− Γ0(1− p) · P [d′(Y ) = 0|H = 0]

= Γ0(1− p) + Γ1p · |C(d′) ∩ [0, 1]| − Γ0(1− p)
= Γ1p · |C(d′) ∩ [0, 1]| ≥ 0. (1.49)

Consider the test d? : R→ {0, 1} given by

d?(y) = 0 iff y ∈ {0, 1}.

The arguments leading to (1.49) also show that

Ĵ(d?) = Γ1p · |C(d?) ∩ [0, 1]| = 0,

and this shows that d? is the Bayesian decision rule.

1.11 Randomized tests
As we shall see shortly, a solution cannot always be found to the minimax and
Neyman–Pearson formulations of the hypothesis testing problem if the search is
restricted to the class of decision rules D as was done for the Bayesian set–up. In
some very real sense this class of tests D is not large enough to yield a solution,
and we enlarge it by considering the class of randomized tests or decision rules.

A randomized test δ is a Borel mapping δ : Rk → [0, 1] with the following
interpretation as conditional probability: Having observed Y = y, it is decided
that the state of nature is 1 (resp. 0) with probability δ(y) (resp. 1 − δ(y)). The
collection of all randomized tests will be denoted by D?. Obviously, any test d in
D can be mechanized as a randomized test, say δd : Rk → [0, 1], given by

δd(y) ≡ d(y), y ∈ Rk.

A test in D is often referred to as a pure strategy.
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Probabilistic construction A natural question then arises as to how such ran-
domization mechanisms can be incorporated into the probabilistic framework in-
troduced earlier in Section 1.2:

The model data is unchanged as we are given two probability distributions F0

and F1 on Rk and a prior p in [0, 1]. We still consider a sample space Ω equipped
with a σ-field of events F , and on it we now define the three rvs H , Y and D
which take values in {0, 1}, Rk and {0, 1}, respectively. The rvs H and Y have
the same interpretation as before, as state of nature and observation, respectively,
while the rvD now encodes the decision to be taken on the basis of the observation
Y .

With each decision rule δ in D? we associate a probability measure Pδ on F
such that the following constraints are satisfied: As before, this time under Pδ, we
still have

Pδ [Y ≤ y|H = h] = Fh(y),
y ∈ Rk,
h = 0, 1

and
p = Pδ [H = 1] = 1− Pδ [H = 0] .

Moreover, for h = 0, 1 and y in Rk, we require that

Pδ [D = d|H = h,Y = y] =


1− δ(y) if d = 0

δ(y) if d = 1.
(1.50)

The joint probability distribution of the rvs H , D and Y (under Pδ) can now
be completely specified: With h, d = 0, 1 and a Borel subset B of Rk, a precondi-
tioning argument gives

Pδ [H = h,D = d,Y ∈ B]

= Eδ [1 [H = h,Y ∈ B]Pδ [D = d|H,Y ]]

= Eδ [1 [H = h,Y ∈ B] (dδ(Y ) + (1− d) (1− δ(Y )))]

= Pδ [H = h] ·
∫
B

(dδ(y) + (1− d) (1− δ(y))) dFh(y)

=


Pδ [H = h] ·

∫
B

(1− δ(y))dFh(y) if d = 0

Pδ [H = h] ·
∫
B
δ(y)dFh(y) if d = 1.

(1.51)
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An alternate framework The class D? of randomized strategies gives rise to a
collection of probability triples, namely

{(Ω,F ,Pδ) , δ ∈ D?} .

It is however possible to provide an equivalent probabilistic framework using a
single probability triple (Ω,F ,P). To see how this can be done, imagine that
the original probability triple (Ω,F ,P) is sufficiently rich that there exists a rv
U : Ω → [0, 1] which is uniformly distributed and independent of the pair of rvs
H and Y , This amounts to

P [U ≤ t,H = h,Y ≤ y] = P [U ≤ t]P [H = h,Y ≤ y] ,
t ∈ R
h = 0, 1,
y ∈ Rk

with

P [U ≤ t] =


0 if t ≤ 0

min(t, 1) if t ≥ 0.

Now, for each decision rule δ in D?, define the {0, 1}-valued rv Dδ given by

Dδ = 1 [U ≤ δ(Y )] .

Note that

P [Dδ = 1|H = h,Y = y] = E [1 [U ≤ δ(Y )] |H = h,Y = y]

= E [1 [U ≤ δ(y)] |H = h,Y = y]

= P [U ≤ δ(y)]

= δ(y) (1.52)

while

P [Dδ = 0|H = h,Y = y] = E [1 [U > δ(Y )] |H = h,Y = y]

= E [1 [U > δ(y)] |H = h,Y = y]

= P [U > δ(y)]

= 1− δ(y) (1.53)

under the enforced independence assumption. Therefore, the conditional distribu-
tion of Dδ (under P) given H and Y coincides with the conditional distribution
of D (under Pδ) given H and Y , and the two formalisms are probabilistically
equivalent.
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Evaluating error probabilities Consider a randomized test δ inD?. In analogy
with (1.10) and (1.11), we evaluate the probabilities of false alarm and miss under
δ as

PF (δ) ≡ Pδ [D = 1|H = 0] (1.54)

and
PM(δ) ≡ Pδ [D = 0|H = 1] . (1.55)

It is also convenient to consider the so–called probability of detection given by

PD(δ) ≡ Pδ [D = 1|H = 1] = 1− PM(δ). (1.56)

Because

Pδ [D = h|H] = Eδ [Pδ [D = h|H,Y ] |H] , h = 0, 1

we readily get that

PF (δ) =

∫
Rk
δ(y)dF0(y) (1.57)

and
PM(δ) =

∫
Rk

(1− δ(y)) dF1(y). (1.58)

1.12 The Bayesian problem revisited
Assuming the cost function C : {0, 1} × {0, 1} → R introduced in Section 1.4,
we define the expected cost function J? : D? → R given by

J?(δ) = Eδ [C(H,D)] , δ ∈ D?.

When considering randomized decision rules, the original Bayesian Problem
PB is now reformulated as the minimization problem

P?B : Minimize J?(δ) over δ in D?.

This amounts to finding an admissible test δ? in D? such that

J?(δ?) ≤ J?(δ), δ ∈ D?. (1.59)

Any admissible test δ? which satisfies (1.59) is called a randomized Bayesian test,
and the value

J?(δ?) = inf
δ∈D?

J?(δ)) = min
δ∈D?

J?(d) (1.60)
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is sometimes referred to as the randomized Bayesian cost.
Obviously, since D ⊂ D? with

J?(δd) = J(d), d ∈ D,

it is plain that
inf
δ∈D?

J?(δ) ≤ inf
d∈D

J(d).

While in principle this last inequality could be strict, we now show that it is not
so and that the Bayesian problem is not affected by considering the larger set of
randomized decision rules.

Theorem 1.12.1 Under the absolute continuity condition (A.1), it holds that

inf
δ∈D?

J?(δ) = inf
d∈D

J(d). (1.61)

Proof. Pick an arbitrary test δ in D?, A simple preconditioning argument shows
that

J?(δ) = Eδ [C(H,D)]

= Eδ [Eδ [C(H,D)|H,Y ]]

= Eδ [C(H, 1)Pδ [D = 1|H,Y ] + C(H, 0)Pδ [D = 0|H,Y ]]

= Eδ [C(H, 1) · δ(Y ) + C(H, 0) · (1− δ(Y ))]

= Eδ [C(H, 0)] + Eδ [(C(H, 1)− C(H, 0)) · δ(Y )] (1.62)

with

Eδ [(C(H, 1)− C(H, 0)) · δ(Y )]

= Eδ [(C(H, 1)− C(H, 0)) · Eδ [δ(Y )|H]]

= (C(1, 1)− C(1, 0))Eδ [δ(Y )|H = 1]Pδ [H = 1]

+ (C(0, 1)− C(0, 0))Eδ [δ(Y )|H = 0]Pδ [H = 0]

= −Γ1p · Eδ [δ(Y )|H = 1] + Γ1(1− p) · Eδ [δ(Y )|H = 0] . (1.63)

Using the absolute continuity condition (A.1) we can now write

Eδ [δ(Y )|H = h] =

∫
Rk
δ(y)dFh(y) =

∫
Rk
δ(y)fh(y)dF (y), h = 0, 1



1.12. THE BAYESIAN PROBLEM REVISITED 31

so that

J?(δ) = −Γ1p ·
∫
Rk
δ(y)f1(y)dF (y) + Γ0(1− p) ·

∫
Rk
δ(y)f0(y)dF (y)

=

∫
Rk

(−Γ1pf1(y) + Γ0(1− p)f0(y)) δ(y)dF (y)

= −
∫
Rk
h(y)δ(y)dF (y) (1.64)

where the mapping h : Rk → R is given by (1.24)
From Theorem 1.5.1 recall that the Bayesian rule which solves Problem P?B is

the test d? : Rk → {0, 1} inD given by (1.25). Note that d? can also be interpreted
as the randomized rule δ? : Rk → [0, 1] given by

δ?(y) =


0 if h(y) < 0

1 if h(y) ≥ 0.

Equivalently, this can be written as

δ?(y) =


0 if y ∈ C?

1 if y 6∈ C?.

The desired result will be established if we show that

J?(d?) ≤ J?(δ), δ ∈ D?.

The approach is reminiscent of the one used in the proof of Theorem 1.5.1: For
an arbitrary δ in D?, earlier calculations show that

J?(δ)− J?(d?) = −
∫
Rk
h(y)δ(y)dF (y) +

∫
Rk
h(y)δ?(y)dF (y)

=

∫
Rk
h(y) (δ?(y)− δ(y)) dF (y)

=

∫
C?

(−h(y))δ(y)dF (y) +

∫
Rk\C?

(1− δ(y))h(y)dF (y)

≥ 0 (1.65)

since ∫
C?

(−h(y))dF (y) ≥ 0 and
∫
Rk\C?

(1− δ(y))h(y)dF (y) ≥ 0
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by the very definition of the set C? and of the mapping h : Rk → R.

1.13 Randomizing between two pure decision rules
Consider two pure strategies d1 and d2 in D. With a in (0, 1), we introduce a
randomized policy δa in D? which first selects the pure strategy d1 (resp. d2)
with probability a (resp. 1 − a), and then uses the pure policy that was selected.
Formally, δa : Rk → [0, 1] is given by

δ(y) = ad1(y) + (1− a)d2(y), y ∈ Rk.

One very concrete way to implement such a randomized policy on the origi-
nal triple (Ω,F ,P) is as follows: Consider the original probabilistic framework
introduced in Section 1.2 and assume it to be sufficiently rich to carry an extra R-
valued rv V independent of the rvs H and Y (under P), and uniformly distributed
on the interval [0, 1]. Define the {0, 1}-valued rv Ba given by

Ba = 1 [V ≤ a] .

It is plain that the rv Ba is independent of the rvs H and Y (under P), with

P [Ba = 1] = a = 1− P [Ba = 0] .

Define the decision rv Da given by

Da = Bad1(Y ) + (1−Ba)d2(Y ).

It is easy to check that

P [Da = 1|H = h,Y = y]

= P [Bad1(Y ) + (1−Ba)d2(Y ) = 1|H = h,Y = y]

= P [Bad1(y) + (1−Ba)d2(y) = 1|H = h,Y = y]

= P [Ba = 1, d1(y) = 1|H = h,Y = y] + P [Ba = 0, d2(y) = 1|H = h,Y = y]

= d1(y)P [Ba = 1|H = h,Y = y] + d2(y)P [Ba = 0|H = h,Y = y]

= d1(y)P [Ba = 1] + d2(y)P [Ba = 0]

= ad1(y) + (1− a)d2(y),
y ∈ Rk,
h = 0, 1

(1.66)
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as desired.
Applying the expressions (1.57) and (1.58) with the randomized test δa we get

PF (δa) =

∫
Rk
δa(y)dF0(y)

=

∫
Rk

(ad1(y) + (1− a)d2(y)) dF0(y)

= a

∫
Rk
d1(y)dF0(y) + (1− a)

∫
Rk
d2(y)dF0(y)

= aPF (d1) + (1− a)PF (d2). (1.67)

Similarly we find that

PM(δa) =

∫
Rk

(1− δa(y)) dF1(y)

=

∫
Rk

(1− ad1(y)− (1− a)d2(y)) dF1(y)

= a

∫
Rk

(1− d1(y))dF1(y) + (1− a)

∫
Rk

(1− d2(y))dF1(y)

= aPM(d1) + (1− a)PM(d2). (1.68)

1.14 The minimax formulation

The Bayesian formulation implicitly assumes knowledge of the prior distribution
of the hypothesis rv H . In many situations, this assumption cannot be adequately
justified, and the Bayesian formulation has to abandonned for the so–called mini-
max criterion.

The basic idea For each p in [0, 1], let Jp(d) denote the expected cost associated
with the admissible decision rule d in D when the prior on H is p, i.e.,

Jp(d) ≡ Ep [C(H, d(H))]

where Ep [·] denotes expectation with prior p. The Bayesian problem now reads

Pp,B : Minimize Jp(d) over d in D.
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As shown earlier, under the mild Conditions (A.1) and (A.2) (assumed from now
on), Pp,B has a solution which is now denoted by d?(p) to indicate its dependence
on the prior p. Clearly, any such solution satisfies

Jp(d
?(p)) ≤ Jp(d), d ∈ D. (1.69)

Let the corresponding Bayesian cost be denoted by

V (p) ≡ min
d∈D

Jp(d) (1.70)

It is plain that
V (p) = Jp(d

?(p)). (1.71)

Since the exact value of the prior p is not available, a reasonable way to pro-
ceed consists in using the Bayesian test for that value of p which yields the largest
Bayesian cost (1.70): Thus, with the notation introduced, let pm in [0, 1] such that

V (pm) = max
p∈[0,1]

V (p), (1.72)

and use the Bayesian rule d?(pm) – The existence of pm is guaranteed by the fact
that the mapping V : [0, 1] → R is continuous on the closed bounded interval
[0, 1] by Lemma 1.15.1, hence achieves its maximum value on [0, 1].

The test d?(pm), hereafter denoted d?m, is known as the minimax decision rule;
it tries to compensate for the uncertainty in the modeling assumptions, namely,
that the exact value of p is not known. We refer to the cost value

V (pm) = Jpm(d?(pm))

as the minimax cost; it will be denoted by Vm.
That there is a performance cost to pay for this uncertainty is not surprising

in the least: Indeed, let pTrue be the true (but unknown) value of the prior p. If
pm = pTrue, then d?m coincides with the Bayesian test d?(pTrue) and this choice is
optimal. On the other hand, if pm 6= pTrue, then

JpTrue
(d?(pTrue)) ≤ JpTrue

(d?(pm)) = JpTrue
(d?m)

with a strict inequality in most cases, i.e., as expected, a better performance level
could be reached if the value pTrue were known.
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The Minimax Theorem

Theorem 1.14.1 Under the absolute continuity condition (A.1), the minimax cost
Vm can be characterized by

Vm = min
d∈D

(
max
p∈[0,1]

Jp(d)

)
= max

p∈[0,1]

(
min
d∈D

Jp(d)

)
. (1.73)

Proof. Combining (1.69) and (1.71) we get

V (p) ≤ Jp(d),
d ∈ D

p ∈ [0, 1].

Therefore, for each d in D it holds that

max
p∈[0,1]

V (p) ≤ max
p∈[0,1]

Jp(d),

whence

min
d∈D

(
max
p∈[0,1]

V (p)

)
≤ min

d∈D

(
max
p∈[0,1]

Jp(d)

)
.

This is equivalent to

max
p∈[0,1]

V (p) ≤ min
d∈D

(
max
p∈[0,1]

Jp(d)

)
,

an inequality that also reads as

max
p∈[0,1]

(
min
d∈D

Jp(d)

)
≤ min

d∈D

(
max
p∈[0,1]

Jp(d)

)
.

The equality (1.73) will be established if we show that

min
d∈D

(
max
p∈[0,1]

Jp(d)

)
≤ max

p∈[0,1]

(
min
d∈D

Jp(d)

)
. (1.74)
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1.15 The minimax equation
The main issue in constructing the minimax rule d?m consists in determining the
value of pm such that (1.72) holds; its characterization is achieved through the
Minimax Equation discussed below. In view of (1.71) this requirement also reads

Jpm(d?(pm)) = max
p∈[0,1]

V (p). (1.75)

An auxiliary concavity result The following technical fact will be useful in the
derivation of the minimax equation.

Lemma 1.15.1 The mapping V : [0, 1] → R is concave and continuous on the
closed interval [0, 1] with boundary values V (0) = C(0, 0) and V (1) = C(1, 1).

For easy reference, recall that for each test d in D, the expression

Jp(d) = pC(1, 1) + (1− p)C(0, 0)

+ Γ0(1− p) · PF (d) + Γ1p · PM(d) (1.76)

holds with p in [0, 1].

Proof. With p = 0 in (1.76) we get

J0(d) = C(0, 0) + Γ0PF (d), d ∈ D.

Therefore,
V (0) = C(0, 0) + Γ0 · inf

d∈D
PF (d)

upon using Γ0 > 0. However, PF (d∞) = 0, so that infd∈D PF (d) = 0, whence
V (0) = C(0, 0). A similar argument shows that V (1) = C(1, 1).

The probabilities PF (d) and PM(d) appearing in (1.76) do not depend on p,
but rather on F0, F1 and d. Thus, the mapping p→ Jp(d) is affine, hence concave
in p. As a result, the mapping V : [0, 1] → R is concave on the closed interval
[0, 1], being the infimum of the family {Jp(d), d ∈ D} of concave functions.

Because a concave function defined on an open interval is necessarily contin-
uous on that open interval, the mapping V : [0, 1] → R is continuous on (0, 1).
Therefore, it remains only to show that this mapping is also continuous at the
boundary points p = 0 and p = 1. We discuss only the case p = 0; the case p = 1
can be handled mutatis mutandis and is left to the interested reader as an exercise.
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In view of (1.76) continuity of the mapping V : [0, 1] → R at p = 0 is
equivalent to

lim
p→0

(
inf
d∈D

(Γ0(1− p) · PF (d) + Γ1p · PM(d))

)
= 0 (1.77)

since V (0) = C(0, 0) by the first part of the proof.
To do so, write

∆(p) = inf
d∈D

(Γ0(1− p) · PF (d) + Γ1p · PM(d)) , p ∈ [0, 1].

Thus, for any fixed p in (0, 1), we get

∆(p) = inf
d∈D

(Γ0 · PF (d) + p (Γ1 · PM(d)− Γ0 · PF (d)))

= inf
d∈D

(Γ0 · PF (d) + p · A(d)) (1.78)

where we have set

A(d) = Γ1 · PM(d)− Γ0 · PF (d), d ∈ D.

Next, note the elementary bounds

inf
d∈D

(p · A(d)) ≤ ∆(p) ≤ Γ0 · PF (d) + p · A(d), d ∈ D. (1.79)

It is clear that limp→0 infd∈D (p · A(d)) = 0 since∣∣∣∣ inf
d∈D

(p · A(d))

∣∣∣∣ ≤ p · sup
d∈D
|A(d)| ≤ p (Γ0 + Γ1) .

It then follows from the first inequality in (1.79) that lim infp→0 ∆(p) ≥ 0. On the
other hand, the second inequality in (1.79) yields

lim sup
p→0

∆(p) ≤ Γ0 · PF (d), d ∈ D.

Taking d = d∞ in this last inequality gives lim supp→0 ∆(p) ≤ 0, and combining
the last two limiting statements we get the desired conclusion limp→0 ∆(p) = 0.



38 CHAPTER 1. SIMPLE HYPOTHESIS TESTING

Figure
The minimax equation Fix p in [0, 1]. The mapping α→ Jα(d?(p)) is affine in
the variable α on the interval [0, 1] as we recall that

Jα(d?(p)) = αC(1, 1) + (1− α)C(0, 0)

+Γ0(1− α) · PF (d?(p)) + Γ1α · PM(d?(p)) (1.80)

with α in [0, 1] upon specializing (1.76) to the test d?(p). Therefore, the graph of
the mapping α → Jα(d?(p)) is a straight line, whose slope is constant over [0, 1]
and given by

d

dα
Jα(d?(p)) = C(1, 1)− C(0, 0) + Γ1 · PM(d?(p))− Γ0 · PF (d?(p)). (1.81)

By its definition, the Bayesian cost satisfies

V (α) ≤ Jα(d),
d ∈ D

α ∈ [0, 1]

with strict inequality for most tests. With d = d?(p) this inequality becomes an
equality when α = p, namely

V (p) = Jp(d
?(p))

while
V (α) ≤ Jα(d?(p)), α ∈ [0, 1].

With p in (0, 1), if the concave mapping α→ V (α) is differentiable at α = p,
then the straight line α→ Jα(d?(p)) will be tangential to the mapping α→ V (α)
at α = p – This is a consequence of the concavity established in Lemma 1.15.1.
Thus,

d

dα
V (α)

∣∣∣
α=p

=
d

dα
Jα(d?(p))

∣∣∣
α=p

. (1.82)

In particular, if pm is an element of (0, 1) and the mapping α → V (α) is
differentiable at α = pm, then

d

dα
V (α)

∣∣∣
α=pm

=
d

dα
Jα(d?(pm))

∣∣∣
α=pm

. (1.83)

But pm being a maximum for the function α→ V (α), we must have

d

dα
V (α)

∣∣∣
α=pm

= 0,
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whence
d

dα
Jα(d?(pm))

∣∣∣
α=pm

= 0.

Using (1.81) we conclude that

C(1, 1)− C(0, 0) + Γ0PF (d?(pm))− Γ1PM(d?(pm)) = 0. (1.84)

This equation characterizing p is called the Minimax Equation.
For the probability of error criterion, the Minimax Equation takes the simpler

form
PF (d?(pm)) = PM(d?(p)).

This analysis does not cover the cases when (i) pm = 0, (ii) pm = 1 and (iii) pm

is an element of (0, 1) but the mapping α→ V (α) is not differentiable at α = pm,

1.16 The minimax formulation – Two examples
The Gaussian case The setting is that of Section 1.8 to which we refer the
reader for the notation.

As shown there, for any η > 0 we have

PF (Lrtη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PM(Lrtη) = Φ

(
log η − 1

2
d2

d

)
For each p in [0, 1], with

η(p) =
1− p
p
· Γ0

Γ1

we have d?(p) = Lrtη(p) and the expression (1.76) becomes

Jp(d
?(p)) = pC(1, 1) + (1− p)C(0, 0)

+ Γ0(1− p) · PF (d?(p)) + Γ1p · PM(d?(p))

= pC(1, 1) + (1− p)C(0, 0)

+ Γ0(1− p) ·
(

1− Φ

(
log η(p) + 1

2
d2

d

))
+ Γ1p · Φ

(
log η(p)− 1

2
d2

d

)
. (1.85)
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Therefore,

V (p) = pC(1, 1) + (1− p)C(0, 0)

+ Γ0(1− p) ·
(

1− Φ

(
log η(p) + 1

2
d2

d

))
+ Γ1p · Φ

(
log η(p)− 1

2
d2

d

)
. (1.86)

The boundary cases p = 0 and p = 1 are easily recovered upon formally sub-
stituting these values in the expression above. The Minimax Equation takes the
form

C(1, 1)− C(0, 0)

= Γ1Φ

(
log η(pm)− 1

2
d2

d

)
− Γ0

(
1− Φ

(
log η(pm) + 1

2
d2

d

))
.

For the probability of error case, simplifications occur. The last expression
becomes

V (p) = (1− p) ·

(
1− Φ

(
1−p
p

+ 1
2
d2

d

))

+ p · Φ

(
log 1−p

p
− 1

2
d2

d

)
(1.87)

and the Minimax Equation reduces to

Φ

(
log η(pm)− 1

2
d2

d

)
+ Φ

(
log η(pm) + 1

2
d2

d

)
= 1.

It is easy to see that this requires log η(pm) = 0 so that pm = 1
2

(indeed in (0, 1)),
an intuitively satisfying conclusion!

The Bernoulli case The setting is that of Section 1.9 to which we refer the
reader for the notation. We discuss only the case a1 < a0, and leave the case
a0 < a1 as an exercise for the interested reader.

Note that the condition a1 < a0 is equivalent to 1 < 1−a1
1−a0 , so that the expres-

sions (1.45) and (1.46) for the probabilities PF (dη) and PM(dη), respectively, are
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piecewise constant functions of η with different constant values on the intervals
(0, a1

a0
], (a1

a0
, 1−a1

1−a0 ] and (1−a1
1−a0 ,∞): Direct inspection of the expression (1.45) yields

PF (dη) =


1 if 0 < η ≤ a1

a0

1− a0 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η.

(1.88)

Similarly, using (1.46) we find

PM(dη) =


0 if 0 < η ≤ a1

a0

a1 if a1
a0
< η ≤ 1−a1

1−a0

1 if 1−a1
1−a0 < η.

(1.89)

Thus, for each p in [0, 1], we see from (1.76) that the cost Jp(dη) takes a differ-
ent value on each of the intervals (0, a1

a0
], (a1

a0
, 1−a1

1−a0 ] and (1−a1
1−a0 ,∞): Specifically,

we have:
On (0, a1

a0
],

Jp(dη) = pC(1, 1) + (1− p)C(0, 0) + Γ0(1− p)
= pC(1, 1) + (1− p)C(0, 1); (1.90)

On (a1
a0
, 1−a1

1−a0 ],

Jp(dη)

= pC(1, 1) + (1− p)C(0, 0) + Γ0(1− p) · (1− a0) + Γ1p · a1

= pC(1, 1) + (1− p)C(0, 1) + Γ1p · a1 − Γ0(1− p) · a0

= p (C(1, 1) + Γ1a1) + (1− p) (C(0, 1)− Γ0a0) ; (1.91)

On (1−a1
1−a0 ,∞),

Jp(dη) = pC(1, 1) + (1− p)C(0, 0) + Γ1p

= pC(1, 0) + (1− p)C(0, 0). (1.92)

Recall that

V (p) = Jp(dη(p)) with η(p) = Γ0(1−p)
Γ1p

, 0 < p ≤ 1.
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As the mapping p : (0, 1]→ R+ : p→ η(p) is strictly decreasing, the equations

η(p) =
1− a1

1− a0

, 0 < p ≤ 1

and
η(p) =

a1

a0

, 0 < p ≤ 1

have each a unique solution in (0, 1). Their solutions, denoted p− and p+, respec-
tively, are given by

p− =
Γ0(1− a0)

Γ1(1− a1) + Γ0(1− a0)

and

p+ =
Γ0a0

Γ1a1 + Γ0a0

.

As expected p− < 1
2
< p+.

Earlier expressions can now be used

V (p)

=


pC(1, 0) + (1− p)C(0, 0) if p ∈ (0, p−]

p (C(1, 1) + Γ1a1) + (1− p) (C(0, 1)− Γ0a0) if p ∈ (p−, p+]

pC(1, 1) + (1− p)C(0, 1) if p ∈ (p+, 1).

It is plain that the function V : [0, 1] → R is piecewise linear with three distinct
segments, namely (0, p−], (p−, p+] and (p+, 1]. There are two kinks at p = p− and
p = p+, respectively. That the function is concave can be seen by computing the
left and right-derivatives at these points. However, the function V : [0, 1] → R is
differentiable everywhere except at these kinks. However the maximum occurs at
one of these points so that pm ∈ {p−, p+}.

For the probability of error criterion, we find that

V (p) =


p if p ∈ (0, p−]

pa1 + (1− p) (1− a0) if p ∈ (p−, p+]

1− p if p ∈ (p+, 1)

(1.93)
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with

p− =
1− a0

(1− a1) + (1− a0)

and
p+ =

a0

a1 + a0

.

It is trivial to check that V (p±−) = V (p±+), establishing continuity at the kink
points. Note that here pm = p+ so that the minimax cost is given by

Vm = 1− p+ =
a1

a1 + a0

.

1.17 The Neyman-Pearson formulation

In many situations, not only is the prior probability p not available but it is quite
difficult to make meaningful cost assignments. This is typically the case in radar
applications – After all, what is the real cost of failing to detect an incoming mis-
sile? While it is tempting to seek to minimize both the probabilities of miss and
false alarm, these are (usually) conflicting objectives and a constrained optimiza-
tion problem is considered instead. For 0 ≤ α ≤ 1, consider the constrained
optimization problem NPα where

NPα : Maximize PD(d) over d in Dα

where Dα is the collection of admissible tests in D of size at most α, i. e.,

Dα = {d ∈ D : PF (d) ≤ α}.

Solving NPα amounts to finding a test dNP(α) in Dα with the property that

PD(d) ≤ PD(dNP(α)), d ∈ Dα.

Such a test dNP(α), when it exists, is called a Neyman–Pearson test of size α.
Following the accepted terminology, its power β(α) is given by

β(α) := sup
d∈Dα

PD(d)
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The Lagrangian argument When reformulated as

NPα : Minimize PM(d) over d in Dα,

the constrained optimization problem NPα can be solved by the following La-
grangian arguments: First, for each λ ≥ 0 consider the Lagrangian functional
Jλ : D → R given by

Jλ(d) = PM(d) + λ (PF (d)− α) , d ∈ D.

The Lagrangian problem LPλ is then defined as the unconstrained minimization
problem

LPλ : Minimize Jλ(d) over d in D
Its solution is readily obtained as follows: For any test d in D, we observe that

Jλ(d) = P [d(Y ) = 0|H = 1] + λ (P [d(Y ) = 1|H = 0]− α)

= P [d(Y ) = 0|H = 1] + λ (1− P [d(Y ) = 0|H = 0]− α)

= λ(1− α) + P [d(Y ) = 0|H = 1]− λP [d(Y ) = 0|H = 0]

= λ(1− α) +

∫
C(d)

hλ(y)dF (y) (1.94)

with hλ : Rk → R given by

hλ(y) = f1(y)− λf0(y), y ∈ Rk.

By the arguments leading to Theorem 1.5.1, the Lagrangian problem LPλ is seen
to be solved by the test dλ given by

dλ(y) = 0 iff hλ(y) < 0, (1.95)

or equivalently,

dλ(y) = 0 iff f1(y) < λf0(y). (1.96)

The next step consists in finding some value λ(α) > 0 of the Lagrangian
multiplier such that the test dλ(α) meets the constraint, i.e.,

PF (dλ(α)) = α. (1.97)

If such value λ(α) exists, then we get

Jλ(α)(dλ(α)) ≤ Jλ(α)(d), d ∈ D,
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or equivalently,

PM(dλ(α)) ≤ PM(d) + λ(α) (PF (d)− α) , d ∈ D.

Consequently, for every test d in Dα (and not merely in D), we conclude that

PM(dλ(α)) ≤ PM(d)

since then PM(d) ≤ α. The test dλ(α) being in Dα, it is clear that dλ(α) solves
NPα. In other words, dNP(α) can be taken to be dλ(α).

Meeting the constraint (1.97) The Lagrangian argument hinges upon the possi-
bility of finding a value λ(α) of the Lagrange multiplier such that PF (dλ(α)) = α.
Unfortunately, this may not be always possible, unless additional assumptions are
imposed. To see this, note that for every λ ≥ 0, it holds that

PF (dλ) = P [dλ(Y ) = 1|H = 0]

= P [f1(Y ) ≥ λf0(Y )|H = 0] . (1.98)

The mapping R+ → [0, 1] : λ → PF (dλ) is clearly monotone non-increasing
with boundary values PF (d0) = 1 and limλ↑∞ PF (dλ) = PF (d∞) = 0. However,
the constraint PF (dλ) = α may fail to hold for some α in [0, 1] because the set
of values {PF (dλ), λ ≥ 0} need not contain α. This will occur if the mapping
λ→ PF (dλ) is not continuous at some point, say λ? > 0, with

lim
λ↑λ?

PF (dλ) < α < lim
λ↓λ?

PF (dλ).

Later in this section we illustrate this situation on the simple example of deciding
between the two hypotheses on the basis of a Poisson rv.

Although randomized policies are introduced to solve this difficulty. there are
however situations where this can be avoided because each one of the problems
NPα has a solution within the set of non-randomized policies D. One such sit-
uation occurs when F is Lebesgue measure on Rk and the absolute continuity
condition (A.2) holds.

Lemma 1.17.1 Assume F to be Lebesgue measure on Rk and that the absolute
continuity condition (A.2) holds. Then the mapping R+ → [0, 1] : λ→ PF (dλ) is
continuous.

The proof of Lemma 1.17.1 is given Section 1.22. Continuity, ogether with
the monotonicity property discussed earlier, implies {PF (dλ), λ ≥ 0} = [0, 1),
and the requirement can always be met.
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1.18 The Neyman-Pearson Lemma
The discussion of Section 1.17 suggests the need to consider an extended version
of the Neyman-Pearson formulation. First for each α in [0, 1] let D?α denote the
collection of all randomized tests in D? of size at most α, i. e.,

D?α = {δ ∈ D? : PF (δ) ≤ α}.

Now consider the following constrained optimization problem NP?
α where

NP?
α : Maximize PD(δ) over δ in D?α

Solving NP?
α amounts to finding a test δNP(α) in D?α with the property that

PD(δ) ≤ PD(δNP(α)), δ ∈ D?α.

Such a test δNP(α), when it exists, is also called a Neyman–Pearson test of size α.
Its existence and characterization are consequences of two technical facts,

namely Lemma 1.18.1 and Lemma 1.18.2 below, which are collectively referred
as the Neyman-Pearson Lemma. Optimality is handled first.

Optimality With η > 0 and Borel mapping γ : Rk → [0, 1] (to be selected
shortly), define the randomized test δ? : Rk → [0, 1] in D? given by

δ?(y) =


1 if ηf0(y) < f1(y)

γ(y) if f1(y) = ηf0(y)

0 if f1(y) < ηf0(y).

(1.99)

Lemma 1.18.1 For any test δ : Rk → [0, 1] in D?, the inequality

PD(δ?)− PD(δ) ≥ η (PF (δ?)− PF (δ)) (1.100)

holds where the randomized test δ? : Rk → [0, 1] in D? given by (1.99).

Proof. Let δ : Rk → [0, 1] be an arbitrary test in D?. Recall that

PF (δ) =

∫
Rk
δ(y)f0(y)dF (y) and PF (δ?) =

∫
Rk
δ?(y)f0(y)dF (y),
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while

PD(δ) =

∫
Rk
δ(y)f1(y)dF (y) and PD(δ?) =

∫
Rk
δ?(y)f1(y)dF (y).

Now,∫
Rk

(δ?(y)− δ(y)) (f1(y)− ηf0(y)) dF (y)

=

∫
Rk

(δ?(y)− δ(y)) f1(y)dF (y)− η
∫
Rk

(δ?(y)− δ(y)) f0(y)dF (y)

= PD(δ?)− PD(δ)− η (PF (δ?)− PF (δ)) . (1.101)

But direct inspection shows that it always the case that

(δ?(y)− δ(y)) (f1(y)− ηf0(y)) ≥ 0, y ∈ Rk. (1.102)

Therefore,
PD(δ?)− PD(δ)− η (PF (δ?)− PF (δ)) ≥ 0 (1.103)

and the desired conclusion (1.100) follows.

Fix α in (0, 1). If we select η > 0 and γ : Rk → [0, 1] so that

PF (δ?) = α, (1.104)

then the inequality (1.100) implies

PD(δ?)− PD(δ) ≥ η (α− PF (δ)) , δ ∈ D?. (1.105)

Therefore, for any test δ : Rk → [0, 1] in D?α, we get

PD(δ?)− PD(δ) ≥ η (α− PF (δ)) ≥ 0 (1.106)

since PF (δ) ≤ α. In other words,

PD(δ) ≤ PD(δ?), δ ∈ D?α

and the test δ? solves the constrained problem NP?
α.
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Meeting the constraint (1.104) We now show that the parameter η > 0 and the
Borel mapping γ : Rk → [0, 1] can be selected so that the test δ? indeed satisfies
(1.104).

Lemma 1.18.2 For every α in (0, 1] it is always possible to select η > 0 and a
Borel mapping γ : Rk → [0, 1] so that (1.104) holds.

Proof. Note that

PF (δ?)

=

∫
Rk
δ?(y)f0(y)dF (y)

=

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) +

∫
{y∈Rk:f1(y)>ηf0(y)}

f0(y)dF (y)

=

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) + P [f1(Y ) > ηf0(Y )|H = 0] .

Therefore, as we seek to satisfy (1.104) we need to select η > 0 and a Borel
mapping γ : Rk → [0, 1] such that

α− P [f1(Y ) > ηf0(Y )|H = 0] =

∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y).

The form of this last relation suggests introducing the quantity η(α) defined by

η(α) = inf {η > 0 : P [f1(Y ) > ηf0(Y )|H = 0] < α} .

The definition of η(α) is well posed since η → P [f1(Y ) > ηf0(Y )|H = 0] is
non-increasing on (0,∞).

Two cases are possible: If

P [f1(Y ) > η(α)f0(Y )|H = 0] < α,

then take γ : Rk → [0, 1] to be constant, say

γ(y) = γ(α), y ∈ Rk.
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This requires that γ(α) be selected so that

α− P [f1(Y ) > η(α)f0(Y )|H = 0]

= γ(α)

∫
{y∈Rk:f1(y)=η(α)f0(y)}

f0(y)dF (y). (1.107)

More compactly, we find that γ(α) is given by

γ(α) =
α− P [f1(Y ) > η(α)f0(Y )|H = 0]

P [f1(Y ) = η(α)f0(Y )|H = 0]
. (1.108)

If
P [f1(Y ) > η(α)f0(Y )|H = 0] = α,

then we must select the mapping γ : Rk → [0, 1] so that∫
{y∈Rk:f1(y)=ηf0(y)}

γ(y)f0(y)dF (y) = 0.

Just take the constant mapping given by

γ(y) = 0, y ∈ Rk.

1.19 Examples
The Gaussian case Consider again the situation discussed in Section 1.10 where
the observation rv Y is conditionally Gaussian given H , i.e.,

H1 : Y ∼ N(m1,R)
H0 : Y ∼ N(m0,R)

wherem1 andm0 are distinct elements in Rk, and the k× k symmetric matrixR
is positive definite (thus invertible). From the discussion given in Section 1.10, it
follows for each λ > 0 the test dλ takes the form

dλ(y) = 0 iff y′R−1∆m > φ(λ)
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with ∆m and φ(λ) given by (1.37) and (1.38), respectively. We also have

PF (dλ) = 1− Φ

(
log λ+ 1

2
d2

d

)
.

where d2 is given by (1.43) – It is plain that the function λ→ PF (dλ) is continuous
on R+. Given α in the unit interval (0, 1), the value λ(α) is uniquely determined
through the relation

1− α = Φ

(
log λ+ 1

2
d2

d

)
.

This is equivalent to
λ(α) = ed·x1−α−

1
2
d2 .

where for t in (0, 1), let xt denote the only solution to the equation

Φ(x) = t, x ∈ R.

Discontinuity with Bernoulli rvs The setting is that of Section 1.9 to which we
refer the reader for the notation. We discuss only the case a1 < a0, and leave the
case a0 < a1 as an exercise for the interested reader. In Section 1.16 we have
shown that

PF (dλ) =


1 if 0 < λ ≤ a1

a0

1− a0 if a1
a0
< λ ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < λ

(1.109)

as λ ranges over (0,∞). Note that λ→ PF (dλ) is left-continuous.

Discontinuity with Poisson rvs With P(m) denoting the Poisson pmf on N
with parameter m > 0, consider the following simple binary hypothesis testing
problem

H1 : Y ∼ P(m1)
H0 : Y ∼ P(m0)

where m1 6= m0 in (0,∞), Thus,

P [Y = k|H = h] =
(mh)

k

k!
e−mh ,

h = 0, 1
k = 0, 1, . . .
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In this example, we take F to be the counting measure on N, and for every
λ ≥ 0, the definition of dλ reduces to

dλ(k) = 0 iff
(m1)k

k!
e−m1 < λ

(m0)k

k!
e−m0

iff
(
m1

m0

)k
< λe−(m0−m1) (1.110)

with k = 0, 1, . . ..
If m0 < m1, then

dλ(k) = 0 iff
(m1)k

k!
e−m1 < λ

(m0)k

k!
e−m0

iff
(
m1

m0

)k
< λe−(m0−m1)

iff k < η(λ) (1.111)

with k = 0, 1, . . ., where

η(λ) =
log λe−(m0−m1)

log
(
m1

m0

) .

It follows that

PF (dλ) = P [dλ(Y ) = 1|H = 0]

= P [Y ≥ η(λ)|H = 0]

=
∞∑

k=0: η(λ)≤k

(m0)k

k!
e−m0 . (1.112)

In this last expression only the integer ceiling dη(λ)e of η(λ) matters, where
dη(λ)e = inf {k ∈ N : η(λ) ≤ k}, whence

PF (dλ) =
∞∑

k=dη(λ)e

(m0)k

k!
e−m0 .

As a result, the mapping λ→ PF (dλ) is easily seen to be a left-continuous piece-
wise constant mapping with

PF (dλ) = PF (dλn),
λn < λ ≤ λn+1

n = 0, 1, . . .
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where {λn, n = 1, 2, . . .} is a strictly monotone increasing sequence determined
by the relation

n =
log λne

−(m0−m1)

log
(
m1

m0

) . n = 1, 2, . . .

or equivalently,

λn =

(
m1

m0

)n
e−(m1−m0), n = 1, 2, . . .

It is now plain that whenever α is chosen in [0, 1] such that

for some integer n = 0, 1, . . . then the requirement that PF (dλ(α)) = α cannot be
met. This difficulty is circumvented by enlargingD with randomized policies; see
Section 1.11.

1.20 The receiver operating characteristic (ROC)
A careful inspection of the solutions to the three formulations discussed so far
shows that under mild assumptions, the tests of interest all take the form

dη(y) = 0 iff f1(y) < ηf0(y) (1.113)

for some η > 0. It is only the value of the threshold η that varies with the problem
formulation. With the notation used earlier, we have

In the Bayesian formulation,

ηB =
Γ0(1− p)

Γ1p

In the minimax formulation,

ηm =
Γ0(1− pm)

Γ1pm

with pm such that
V (pm) = max (V (p) : p ∈ [0, 1]) .
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When p is a point in (0, 1) at which V : [0, 1] → R is differentiable, then pm can
be characterized through the Minimax Equation.

In the Neyman–Pearson formulation,

ηNP(α) = λ(α).

with λ(α) satisfying the constraint (1.97).
In view of this, it seems natural to analyze in some details the performance of

the tests (1.113). This is done by considering how their probabilities of detection
and of false alarm, namely PF (dη) and PD(dη), vary in relation to each other as η
ranges from η = 0 to η = +∞. This is best understood by plotting the graph (Γ)
of the detection probability against the probability of false alarm. Such a graph is
analogous to a phase portrait for two-dimensional non-linear ODEs, and is called
a receiver operating characteristic (ROC) curve. Its parametric representation is
given by

R+ → [0, 1]× [0, 1] : η → (PF (dη), (PD(dη)),

whence
(Γ) : {(PF (dη), (PD(dη)), η ≥ 0} .

This graph is completely determined by the probability distributions F0 and F1 of
the observation rv Y under the two hypotheses (through the densities f0 and f1

with respect to the underlying distribution F ) and not by cost assignments or the
prior probabilities. A typical ROC curve is drawn below.

Geometric properties The following geometric properties of the ROC curve
are useful for using it.

Theorem 1.20.1 Assume that the absolute continuity conditions (A.1) and (A.2)
hold.

(i): Both mappings R+ → [0, 1] : η → PF (dη) and R+ → [0, 1] : η →
PD(dη) are monotone non-increasing, with PF (d0) = 1 and PD(d0) = 1. More-
over,

lim
η↑∞

PF (dη) = PF (d∞) = 0

and
lim
η↑∞

PD(dη) = PD(d∞) = 0.
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(ii): If the right-derivative of η → PF (dη) exists at η = λ for some λ ≥ 0,
then the right-derivative of η → PD(dη) exists at η = λ, and the relation

d+

dη
PD(dη)

∣∣∣
η=λ

= λ · d
+

dη
PF (dη)

∣∣∣
η=λ

(1.114)

holds.
(iii): If the left-derivative of η → PF (dη) exists at η = λ for some λ > 0, then

the left-derivative of η → PD(dη) exists at η = λ, and the relation

d−

dη
PD(dη)

∣∣∣
η=λ

= λ · d
−

dη
PF (dη)

∣∣∣
η=λ

(1.115)

holds.

The proof of Theorem 1.20.1 is available in Section 1.22. It follows from this
last result that whenever the mapping η → PF (dη) is strictly decreasing, then the
mapping η → PD(dη) is also strictly decreasing, whence the curve (Γ) can be
represented as the graph of a function Γ : [0, 1] → [0, 1] : PF → PD = Γ(PF ),
namely

PD(dη) = Γ(PF (dη)), η ≥ 0. (1.116)

In such circumstance, Theorem 1.20.1 yields the the following information con-
cerning this mapping.

Corollary 1.20.1 Assume the absolute continuity conditions (A.1)-(A.2) to hold.
Whenever the mapping R+ → [0, 1] : η → PF (dη) is differentiable and strictly
decreasing, so is the mapping R+ → [0, 1] : η → PD(dη). In that case, the
mapping Γ : [0, 1]→ [0, 1] is differentiable, strictly increasing and concave with

dΓ

dPF
(PF (dη)) = η, η ≥ 0. (1.117)

Proof. By the very definition of the function Γ, the identity (1.116) must hold.
Now Theorem 1.20.1 and the Implicit Function Theorem yield the differentiability
of the mapping Γ : [0, 1] → [0, 1]. Differentiating both sides of (1.116) with
respect of η we find

d

dη
PD(dη) =

d

dη
Γ(PF (dη))

=
dΓ

dPF
(PF (dη)) ·

d

dη
PF (dη) (1.118)
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as we use the Chain Rule. But Theorem 1.20.1 implies also that

d

dη
PD(dη) = η

d

dη
PF (dη).

Combining these facts we conclude that

η
d

dη
PF (dη) =

dΓ

dPF
(PF (dη)) ·

d

dη
PF (dη).

The mapping R+ → [0, 1] : η → PF (dη) being assumed differentiable and strictly
decreasing, we have d

dη
PF (dη). < 0. Dividing by d

dη
PF (dη) we get (1.117). The

other properties follow readily.

1.21 Operating the ROC and some examples
How to use the ROC These results are most useful for operationally using the
ROC curve:

For the Neyman–Pearson test of size α, consider the point on the ROC curve
with abscissa α. It is determined by the threshold value η(α) with the property
that

PF (dη(α)) = α.

and dNP (α) is simply dη(α). Note that η(α) is the slope of the tangent to the ROC
curve at the point with abscissa α and the power β(α) of the test is simply the
ordinate of that point.

For the Bayesian problem, η is determined by the cost assignment and the
prior distribution of the rv H . The values of PD(dη) and PF (dη) can be easily
determined by finding the point on the ROC where the tangent has slope η.

The Minimax Equation takes the form

C(1, 1)− C(0, 0) + Γ1PM(dη)− Γ0PF (dη) = 0,

or equivalently

C(1, 1)− C(0, 0) + Γ1 = Γ1PD(dη) + Γ0PF (dη).

This shows that the minimax rule d?m is obtained as follows. Consider the straight
line (L) in the (PF , PD)-plane with equation

(L) C(1, 1)− C(0, 0) + Γ1 = Γ1PD + Γ0PF .
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Let (P ?
F , P

?
D) be the point of intersection of the straight line (L) wth the ROC

curve (Γ), and let η? be the corresponding threshold value, i.e., P ?
F = PF (dη?)

and P ?
D = PD(dη?) It is now clear that d?m = dη? .

Building on material developed earlier we now discuss the ROC in the Gaus-
sian and bernoulli cases, respectively.

The Gaussian case The setting is that of Section 1.8 to which we refer the
reader for the notation. As shown there, for any η > 0 we have

PF (dη) = 1− Φ

(
log η + 1

2
d2

d

)
and

PM(dη) = Φ

(
log η − 1

2
d2

d

)
so that

PD(dη) = 1− Φ

(
log η − 1

2
d2

d

)
.

To find the ROC curve, note that

dΦ−1 (1− PF (dη))−
d2

2
= log η,

while we must have

dΦ−1 (1− PD(dη)) +
d2

2
= log η,

whence

dΦ−1 (1− PF (dη))−
d2

2
= dΦ−1 (1− PD(dη)) +

d2

2
.

It follows that

Φ−1 (1− PD(dη)) = Φ−1 (1− PF (dη))− d

so that
1− PD(dη) = Φ

(
Φ−1 (1− PF (dη))− d

)
This shows that here the mapping Γ : [0, 1]→ [0, 1] is well defined and given by

PD = 1− Φ
(
Φ−1 (1− PF )− d

)
, PF ∈ [0, 1].
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The Bernoulli case The setting is that of Section 1.9 to which we refer the
reader for the notation. We discuss only the case a1 < a0, and leave the case
a0 < a1 as an exercise for the interested reader. As shown in Section 1.16 we
have

PF (dη) =


1 if 0 < η ≤ a1

a0

1− a0 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η

(1.119)

and

PD(dη) =


1 if 0 < η ≤ a1

a0

1− a1 if a1
a0
< η ≤ 1−a1

1−a0

0 if 1−a1
1−a0 < η.

(1.120)

Therefore,

{(PF (dη), PD(dη)), η ≥ 0} = {(0, 0), (1− a0, 1− a1), (1, 1)}.

Strictly speaking, in this case the ROC is not a “curve” as it spans only three
points. However, the points are on two segments [(0, 0), (1 − a0, 1 − a1)] and
[(1− a0, 1− a1), (1, 1)] are achievable through randomization.

1.22 Proofs

Preliminaries We start with some facts that prove useful in discussing both
Lemma 1.17.1 and Theorem 1.20.1.

Fix λ > 0, and define the set

R(λ) ≡ {y ∈ Rk : f1(y) ≥ λf0(y)}.

Noting that
dλ(y) = 1 iff y ∈ R(λ),
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it is plain that

PF (dλ) = P [dλ(y) = 1|H = 0]

= P [Y ∈ R(λ)|H = 0]

=

∫
R(λ)

f0(y)dF (y) (1.121)

and

PD(dλ) = P [dλ(y) = 1|H = 1]

=

∫
R(λ)

f1(y)dF (y). (1.122)

For each ∆λ > 0, easy algebra now leads to

PF (dλ+∆λ)− PF (dλ) =

∫
R(λ+∆λ)

f0(y)dF (y)−
∫
R(λ)

f0(y)dF (y)

= −
∫
R+(λ;∆λ)

f0(y)dF (y) (1.123)

where

R+(λ; ∆λ) ≡ {y ∈ Rk : λf0(y) ≤ f1(y) < (λ+ ∆λ)f0(y)}.

Similarly, we have

PF (dλ−∆λ)− PF (dλ) =

∫
R(λ−∆λ)

f0(y)dF (y)−
∫
R(λ)

f0(y)dF (y)

=

∫
R−(λ;∆λ)

f0(y)dF (y) (1.124)

where

R−(λ; ∆λ) ≡ {y ∈ Rk : (λ−∆λ)f0(y) ≤ f1(y) < λf0(y)}.

A proof of Lemma 1.17.1 Fix λ > 0 and ∆λ > 0. When F is Lesbegue
measure on Rk, these relations become

PF (dλ±∆λ)− PF (dλ) = ∓
∫
R±(λ;∆λ)

f0(y)dy
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PF (dλ+∆λ)− PF (dλ) = −
∫
R+(λ;∆λ)

f0(y)dy

= −
∫
R
1 [y ∈ R+(λ; ∆λ)] f0(y)dy (1.125)

and

PF (dλ−∆λ)− PF (dλ) =

∫
R−(λ;∆λ)

f0(y)dy

=

∫
R
1 [y ∈ R−(λ; ∆λ)] f0(y)dy. (1.126)

Because
∩∆λ>0R+(λ; ∆λ) = {y ∈ Rk : λf0(y)}

and
∩∆λ>0R−(λ; ∆λ) = {y ∈ Rk : λf0(y)}

we note that

lim
∆λ↓0

1 [y ∈ R+(λ; ∆λ)] = 1 [y ∈ R?(λ)] , y ∈ Rk

and
lim
∆λ↓0

1 [y ∈ R−(λ; ∆λ)] = 1 [y ∈ R?(λ)] , y ∈ Rk

A proof of Theorem 1.20.1 The first part of the theorem readily follows from
the monotonicity of the sets {R(η), η ≥ 0}, namely

R(η2) ⊆ R(η1), 0 ≤ η1 < η2.

Next, fix η ≥ 0. With ∆η > 0, it is easy to see that The very definition of
R(η; ∆η) implies the inequalities

η

∫
R(η;∆η)

f0(y)dF (y) ≤
∫
R(η;∆η)

f1(y)dF (y)

and ∫
R(η;∆η)

f1(y)dF (y) ≤ (η + ∆η)

∫
R(η;∆η)

f0(y)dF (y).
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It then follows that

(η + ∆η) · PF (dη+∆η)− PF (dη)

∆η
≤ PD(dη+∆η)− PD(dη)

∆η

and
PD(dη+∆η)− PD(dη)

∆η
≤ η · PF (dη+∆η)− PF (dη)

∆η
.

If the right-derivative of η → PF (dη) exists, then

d+

dη
PF (dη) = lim

∆η↓0

PF (dη+∆η)− PF (dη)

∆η

and an easy sandwich argument shows that the limit

lim
∆η↓0

PD(dη+∆η)− PD(dη)

∆η

also exists. Therefore, the right-derivative of η → PD(dη) also exists and is given
by

d+

dη
PD(dη) = η · d

+

dη
PF (dη).

1.23 Exercises

1.24 References



Chapter 2

The M -ary hypothesis testing
problem

As we shall see in this chapter and in the next one, the simple binary hypothesis
testing problem of Chapter 1 admits several important generalizations. The more
general version discussed here assumes that there are more than two hypotheses; it
is of particular relevance to the design of optimal receivers in digital modulation.
In this formulation, nature assumesM distinct states, labeled 0, 1, . . . ,M−1, and
is now encoded in a rv H which take values in the discrete set {0, 1, . . . ,M − 1}.
A decision has to be made as to which of these M hypotheses is the correct one
on the basis of an observation Y which is statistically related to H .

2.1 Motivating examples

Digital communications

Manufacturing

2.2 The probabilistic model

To formulate the M -ary hypothesis testing problem we proceed very much as in
Chapter 1: With positive integer M ≥ 2, we are given M distinct probability
distribution functions F0, . . . , FM−1 on Rk, and a pmf p = (p0, . . . , pM−1) on

61
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{0, 1, . . . ,M − 1} with

0 ≤ pm ≤ 1, m = 0, 1, . . . ,M − 1 and
M−1∑
m=0

pm = 1.

The situation is summarized by

Hm : Y ∼ Fm, m = 0, 1, . . . ,M − 1. (2.1)

We construct a sample space Ω equipped with a σ-field of events F , and rvsH
and Y defined on it and taking values in {0, 1, . . . ,M − 1} and Rk, respectively.
Now the probability distribution functions F0, . . . , FM−1 have the interpretation
that

Fm(y) = P [Y ≤ y|H = m] ,
y ∈ Rk,

m = 0, 1, . . . ,M − 1.

The probability distribution of the rvH is specified by the pmf p = (p0, . . . , pM−1)
with

pm = P [H = m] , m = 0, 1, . . . ,M − 1.

Again, the conditional probability distributions of the observations given the
hypothesis and the probability distribution of H completely specify the joint dis-
tribution of the rvs H and Y : Indeed, for each m = 0, 1, . . . ,M − 1,

P [Y ≤ y, H = m] = P [Y ≤ y|H = m]P [H = m]

= pmFm(y), y ∈ Rk. (2.2)

The unconditional probability distribution function of the rv Y is easily deter-
mined to be

P [Y ≤ y] =
M−1∑
m=0

P [Y ≤ y,H = m] , y ∈ Rk

by the law of total probabilities. For future reference, we set

G(y) ≡ P [Y ≤ y]

=
M−1∑
m=0

pmFm(y), y ∈ Rk. (2.3)

During the discussion, several assumptions will be enforced on the probability
distributions F0, . . . , FM−1. The most common assumption is denoted by (A.3)
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for sake of convenience; it parallels Condition (A.1) made in the binary case:
The probability distributions F0, . . . , FM−1 on Rk satisfy condition (A.3) if they
are absolutely continuous with respect to some distribution F on Rk. This is
equivalent to saying that for each m = 0, 1, . . . ,M − 1, there exists a Borel
mapping fm : Rk → R+ such that

Fm(y) =

∫ y
−∞

fm(η)dF (η),
y ∈ Rk,

m = 0, 1, . . . ,M − 1.
(2.4)

We refer to these Borel mappings as probability density functions with respect to
F .

This condition is hardly constraining since we can always take F to be the
average of the M distributions F0, . . . , FM−1. i.e.,

F (y) ≡ 1

M

(
M−1∑
m=0

Fm(y)

)
, y ∈ Rk (2.5)

However, in most applications F is either Lebesgue measure on Rk or a counting
measure on some countable subset of Rk.

Under Condition (A.3), it is plain that the unconditional probability distribu-
tion function of the rv Y is automatically absolutely continuous with respect to
the distribution F on Rk. Indeed it follows from (2.4) and (2.3) that

G(y) =
M−1∑
m=0

pm

∫ y
−∞

fm(η)dF (η)

=

∫ y
−∞

(
M−1∑
m=0

pmfm(η)

)
dF (η)

=

∫ y
−∞

g(η)dF (η). y ∈ Rk (2.6)

with Borel mapping g : Rk → R+ given by

g(y) =
M−1∑
m=0

pmfm(y), y ∈ Rk. (2.7)

In other words, the unconditional probability distribution function of Y admits
g : Rk → R+ as probability density function with respect to F .
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2.3 Admissible tests
An admissible decision rule or test is any Borel mapping d : Rk → {0, 1, . . . ,M−
1}. The collection of all such admissible rules is still denoted by D. Again the
measurability requirement is imposed to guarantee that the mapping d(Y ) : Ω→
{0, 1, . . . ,M − 1} : ω → d(Y (ω)) is indeed a rv, i.e., {ω ∈ Ω : d(Y (ω)) = m}
is an event in F for all m = 0, 1, . . . ,M − 1. For every rule d in D, we introduce
the sets

Cm(d) ≡ {y ∈ Rk : d(y) = m}, m = 0, 1, . . . ,M − 1.

The collection of M sets C0(d), . . . , CM−1(d) forms an M -ary Borel partition of
Rk in the following sense:

Definition 2.3.1 The collection of M subsets c if the following three conditions
are satisfied:

(i) For each m = 0, 1, . . . ,M − 1, the set Cm is a Borel subset of Rk;
(ii) We have

Cm ∩ Ck = ∅, m 6= k
m, k = 0, 1, . . . ,M − 1

and
(iii) The condition

∪M−1
m=0Cm = Rk

holds.

The collection of all M -ary Borel partitions of Rk is denoted PM(Rk). Note
that any M -ary Borel measurable partition C0, ..., CM−1 in PM(Rk) determines
an admissible test dC1,...,CM−1

in D through

dC1,...,CM−1
(y) = m if y ∈ Cm.

Therefore, there is a one-to-one corespondence between D and PM(Rk).

2.4 The Bayesian formulation
The probabilistic model The Bayesian formulation assumes knowledge of the
prior distribution p = (p0, . . . , pM−1) of the rv H , and of the conditional distribu-
tions F0, . . . , FM−1 of the rv Y given H .
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The optimization problem A cost is incurred for making decisions. This is
captured through the mapping C : {0, 1, . . . ,M − 1} × {0, 1, . . . ,M − 1} → R
with the interpretation that

C(m, `) =

(
Cost incurred for deciding `

when H = m

)
, `,m = 0, 1, . . . ,M − 1.

Using the admissible rule d in D incurs a cost C(H, d(Y )), but as for the binary
hypothesis testing problem, the value of the cost C(H, d(Y )) is not available, and
attention focuses on the expected cost J : D → R given by

J(d) ≡ E [C(H, d(Y ))] , d ∈ D.

Here as well, the Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

Its solution is any test d? in D such that

J(d?) ≤ J(d), d ∈ D. (2.8)

Any test d? in D which satisfies (2.8) is called a Bayesian test, and the value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (2.9)

is known as the Bayesian cost.

Solving the Bayesian problem The solution of PB parallels that given in Sec-
tion 1.5 for the binary case but with some important differences: Fix a test d in D.
The decomposition

1 [d(Y ) = H] + 1 [d(Y ) 6= H] = 1

holds so that

C(H, d(Y ))

= 1 [d(Y ) = H]C(H,H) + 1 [d(Y ) 6= H]C(H, d(Y ))

= C(H,H) + (C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H] . (2.10)

Defining the auxiliary expected cost function Ĵ : D → R to be

Ĵ(d) = E [(C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H]] , d ∈ D (2.11)
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we again conclude that

J(d) = E[C(H,H)] + Ĵ(d), d ∈ D.

Therefore, solving PB is equivalent to solving the auxiliary problem P̂B where

P̂B : Minimize Ĵ(d) over d in D.

Preparatory computations Fix d in D. Note that

Ĵ(d) = E [(C(H, d(Y ))− C(H,H))1 [d(Y ) 6= H]]

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

E [(C(m, `)− C(m,m))1 [H = m, d(Y ) = `]]

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

(C(m, `)− C(m,m))P [H = m, d(Y ) = `]

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

(C(m, `)− C(m,m))P [d(Y ) = `|H = m] pm

)

=
M−1∑
m=0

(
M−1∑

`=0, ` 6=m

pm (C(m, `)− C(m,m))

∫
C`(d)

fm(y)dF (y)

)
.

Interchanging the summations we get

Ĵ(d) =
M−1∑
`=0

(
M−1∑

m=0, m6=`

pm (C(m, `)− C(m,m))

∫
C`(d)

fm(y)dF (y)

)

=
M−1∑
`=0

∫
C`(d)

(
M−1∑

m=0, m 6=`

pm (C(m, `)− C(m,m)) fm(y)

)
dF (y)

=
M−1∑
`=0

∫
C`(d)

h`(y)dF (y)c (2.12)

where for each ` = 0, 1, . . . ,M − 1, the mapping h` : Rk → R is given by

h`(y) =
M−1∑

m=0, m 6=`

pm (C(m, `)− C(m,m)) fm(y), y ∈ Rk.
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Solving P̂B Now define the mapping h : Rk → R given by

h(y) = min
`=0,1,...,M−1

h`(y), y ∈ Rk.

The following facts
h(y) = hd?(y)(y), y ∈ Rk (2.13)

and

h(y) ≤ h`(y),
` = 0, 1, . . . ,M − 1,

y ∈ Rk (2.14)

are simple consequences of the definitions.

Theorem 2.4.1 Assume the absolute continuity condition (A.1) to hold. The test
d? : Rk → {0, 1, . . . ,M − 1} given by

d?(y) = arg min (` = 0, . . . ,M − 1 : h`(y)) , y ∈ Rk (2.15)

(with a lexicographic tiebreaker in the event of ties) is admissible and solves Prob-
lem P̂B, hence solves the Bayesian Problem PB.

Proof. Pick an arbitrary test in D. Using the expression (2.9) we get

Ĵ(d)− Ĵ(d?)

=
M−1∑
`=0

∫
C`(d)

h`(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h`(y)dF (y)

≥
M−1∑
`=0

∫
C`(d)

h(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h`(y)dF (y)

=
M−1∑
`=0

∫
C`(d)

h(y)dF (y)−
M−1∑
`=0

∫
C`(d?)

h(y)dF (y)

=

∫
Rk
h(y)dF (y)−

∫
Rk
h(y)dF (y)

= 0 (2.16)

We made use of the fact that the two collectionsC0(d), . . . , CM−1(d) andC0(d?), . . . , CM−1(d?)
of Borel subsets of Rk each form a Borel partition of Rk. In particular, this implies
that

M−1∑
`=0

∫
C`(d)

h(y)dF (y) =

∫
Rk
h(y)dF (y)
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and
M−1∑
`=0

∫
C`(d?)

h(y)dF (y) =

∫
Rk
h(y)dF (y).

We conclude
Ĵ(d)− Ĵ(d?) ≥ 0, d ∈ D

whence
J(d)− J(d?) ≥ 0, d ∈ D,

and the optimality of d? is now established.

2.5 The probability of error criterion
When C takes the form

C(m, k) = 1 [` 6= m] , m, ` = 0, 1, . . . ,M − 1,

the expected cost reduces to the probability of error

PE(d) = P [d(Y ) 6= H] , d ∈ D.

The Bayesian test d? : Rk → {0, 1, . . . ,M − 1} given by (2.15) now takes the
following form: For each ` = 0, . . . ,M − 1, the mapping h` : Rk → R is now
given by

h`(y) =
M−1∑

m=0, m 6=`

pmfm(y), y ∈ Rk.

But the probability distribution function G : Rk → [0, 1] of the observation rv
Y is given by (2.3), and under condition (A.1) it has probability density function
g : Rk → R+ given by (2.7). Therefore, for each ` = 0, . . . ,M − 1, we have

h`(y) = g(y)− p`f`(y), y ∈ Rk

and the test d? : Rk → {0, 1, . . . ,M − 1} can be rewritten more compactly as

d?(y) = arg max (` = 0, . . . ,M − 1 : p`f`(y)) , y ∈ Rk (2.17)

with a lexicographic tiebreaker in the event of ties.



2.6. THE GAUSSIAN CASE 69

The ML test When all the hypotheses are equally likely, namely

p0 = . . . = pM−1 =
1

M
,

then (2.17) becomes

d?(y) = arg max (` = 0, . . . ,M − 1 : f`(y)) , y ∈ Rk (2.18)

with a lexicographic tiebreaker in the event of ties, so that

d?(y) = m iff fm(y) = max (f`(y), ` = 0, 1, . . . ,M − 1) (2.19)

with a lexicographic tiebreaker in the event of ties.

The MAP computer Bayes’s Theorem gives

P [H = `|Y = y] =
p`f`(y)∑M−1

m=0 pmfm(y)
,

` = 0, 1, . . . ,M − 1,
y ∈ Rk.

This allows rewriting the test d? : Rk → {0, 1, . . . ,M − 1} in the more compact
form

d?(y) = arg max (` = 0, . . . ,M − 1 : P [H = `|Y = y]) , y ∈ Rk (2.20)

with a lexicographic tiebreaker in the event of ties. As with the binary case, we
refer to this rule as the Maximum A Posteriori computer.

2.6 The Gaussian case
Consider the case where the rv Y is Gaussian under each hypothesis, namely

Hm : Y ∼ N(am,Rm). m = 0, 1, . . . ,M − 1. (2.21)

where a0, . . . ,aM−1 are elements in Rk, and the k×k symmetric matricesR0, . . . ,RM−1

are positive definite (thus invertible). Condition (A.3) holds with respect to Lebesgue
measure.

Throughout the M pairs (a0,R0), . . . , (aM−1,RM−1) are assumed to be dis-
tinct so that the probability density function f0, . . . , fM−1 : Rk → R+ are dis-
tinct. Indeed, for each m = 0, . . . ,M − 1, the probability density function
fm : Rk → R+ is given by

fm(y) =
1√

(2π)k detRm

e−
1
2
Qm(y), y ∈ Rk
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with
Qm(y) = (y − am)′R−1

m (y − am), y ∈ Rk.

Thus, for each ` = 0, . . . ,M − 1, we have

h`(y)

=
M−1∑

m=0, m6=`

pm (C(m, `)− C(m,m))
1√

(2π)k detRm

e−
1
2
Qm(y), y ∈ Rk.(2.22)

For the probability of error criterion, for each ` = 0, . . . ,M − 1, this last
expression becomes

h`(y) =
M−1∑

m=0, m 6=`

pm√
(2π)k detRm

e−
1
2
Qm(y)

= g(y)− p`√
(2π)k detR`

e−
1
2
Q`(y), y ∈ Rk. (2.23)

The equal covariance case When

R0 = . . . = RM−1 ≡ R,

additional simplifications occur: For each ` = 0, . . . ,M − 1, we find

h`(y)

=
1√

(2π)k detR

M−1∑
m=0, m 6=`

pm (C(m, `)− C(m,m))√
(2π)k detR

e−
1
2
Q(y−am), y ∈ Rk.

with
Q(y) = y′R−1y, y ∈ Rk.

For the probability of error criterion, for each ` = 0, . . . ,M − 1, we find

h`(y) =
M−1∑

m=0, m 6=`

pm√
(2π)k detR

e−
1
2
Q(y−a)

= g(y)− p`√
(2π)k detR

e−
1
2
Q(y−a`), y ∈ Rk. (2.24)
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Writing

d(p;y) = log p− 1

2
Q(y),

p ∈ (0, 1)
y ∈ Rk,

the Bayesian test d? : Rk → {0, . . . ,M − 1} now reduces to

d?(y) = m iff
d(pm;y − am)
= max (d(p`;y − a`), ` = 0, 1, . . . ,M − 1)

with a lexicographic tiebreaker in the event of ties.
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Chapter 3

Composite hypothesis testing
problems

3.1 A motivating example

Consider the following problem of deciding between two hypotheses. Under the
null hypothesis H0, the observation Y is an Rk-valued rv which is normally dis-
tributed with mean vector m and covariance matrix R which are both known.
Under the alternative hypothesis H1, the Rk-valued rv Y is normally distributed
with mean vector θ and covariance matrix R where θ 6= m is only known to lie
in a subset Θ1 of Rk, and is otherwise unspecified. We assume that m is not an
element of Θ1.

This problem of testing for the binary hypothesis H0 vs. H1 can also be inter-
preted as one of deciding between the hypotheses

H1 : {Hθ, θ ∈ Θ1}
H0 : Y ∼ N(m,R).

(3.1)

where

Hθ : Y ∼ N(θ,R),
θ 6= m,
θ ∈ Θ1

Thus, the alternative hypothesis can be viewed as a composite hypothesis {Hθ, θ ∈
Θ1}. We emphasize that we seek to decide between H0 and H1, or equivalently,
between H0 and {Hθ, θ ∈ Θ1}; the precise value of θ is not thought

73
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3.2 The probabilistic model
More generally consider two non-empty Borel subsets Θ0 and Θ1 of Rp for some
positive integer p. Assume that

Θ0 ∩Θ1 = ∅.

We set
Θ = Θ0 ∪Θ1.

so that the pair Θ0 and Θ1 forms a Borel partition of Θ.
Given is a family of probability distributions {Fθ,θ ∈ Θ} on Rk. For mathe-

matical reasons, it is required that the mapping Rk×Θ→ [0, 1] : (y,θ)→ Fθ(y)
is Borel measurable.

We are given a measurable space (Ω,F). The state of nature is modeled by
means of a rv ϑ : Ω → Θ defined on (Ω,F). The observation is given by an
Rk-valued rv Y : Ω → Rk defined on the same measurable space (Ω,F). with
the interpretation that

P [Y ≤ y|ϑ = θ] = Fθ(y),
y ∈ Rk,
θ ∈ Θ.

(3.2)

The state of nature and the corresponding observation are denoted

Hθ : Y ∼ Fθ (3.3)

with θ ranging in Θ.
The composite binary hypothesis testing problem is then the problem of de-

ciding between the two composite hypotheses H0 = {Hθ, θ ∈ Θ0} and H1 =
{Hθ, θ ∈ Θ1} on the basis of the observation Y .

If either Θ0 or Θ1 is reduced to a single element, the corresponding hypothe-
sis is termed simple. Obviously the problem of simple binary hypothesis testing
discussed in Chapter 1 obtains when each of the sets Θ0 and Θ1 contains exactly
one element.

The composite binary hypothesis testing problem is concisely denoted by

H1 : Y ∼ Fθ, θ ∈ Θ1

H0 : Y ∼ Fθ, θ ∈ Θ0
(3.4)

In a manner reminiscent of the parameter estimation problem of Chapter ??
there are two possible cases, depending on whether or not θ is modeled as a rv;
these are the Bayesian and non-Bayesian cases, respectively.
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3.3 The Bayesian case
Here we assume that there exists a Θ-valued rv ϑ defined on the measurable space
(Ω,F), and let K : Rp → [0, 1] denote its probability distribution.

Write
H = 1 [ϑ ∈ Θ1] .

Note that

p = P [H = 1]

= P [ϑ ∈ Θ1]

=

∫
Θ1

dK(t). (3.5)

In a similar manner we conclude that

1− p = P [H = 0]

= P [ϑ ∈ Θ0]

=

∫
Θ0

dK(t). (3.6)

For each h = 0, 1, we find that

P [Y ≤ y|H = h] =
P [Y ≤ y, H = h]

P [H = h]

=
P [Y ≤ y, ϑ ∈ Θh]

P [ϑ ∈ Θh]

=
E [P [Y ≤ y|ϑ]1 [ϑ ∈ Θh]]

P [ϑ ∈ Θh]

=
E [Fϑ(y)1 [ϑ ∈ Θh]]

P [ϑ ∈ Θh]

=

∫
Θh
Ft(y)dK(t)∫
Θh
dK(t)

, y ∈ Rk. (3.7)

Condition (A.4) parallels Condition (A.2) given in the binary case and Condi-
tion (A.3) given in the M -ary case. It states that for each θ in Θ, the probability
distribution on Rk is absolutely continuous with respect to some distribution F on
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Rk. This is equivalent to saying that there exists a Borel mapping fθ : Rk → R+

such that

Fθ(y) =

∫ y
−∞

fθ(η)dF (η), y ∈ Rk. (3.8)

For mathematical reasons we will require that the mapping

Rk ×Θ→ R+ : (y, θ)→ fθ(y)

is Borel measurable
Fix h = 0, 1 and y in Rk. Under Assumption (A.4) we note that

Fh(y) ≡ P [Y ≤ y|H = h]

=

∫
Θh
Ft(y)dK(t)∫
Θh
dK(t)

(3.9)

with ∫
Θh

Ft(y)dK(t) =

∫
Θh

(∫ y
−∞

ft(η)dF (η)

)
dK(t)

=

∫ y
−∞

(∫
Θh

ft(η)dK(t)

)
dF (η) (3.10)

by Tonelli’s Theorem. Therefore,

Fh(y) =

∫ y
−∞

(∫
Θh
ft(η)dK(t)∫
Θh
dK(t)

)
dF (η). (3.11)

This shows that Condition (A.1) holds for F0 and F1 with respect to F with prob-
ability density functions f0, f1 : Rk → R+ given by

fh(y) =

∫
Θh
ft(y)dK(t)∫
Θh
dK(t)

,
h = 0, 1,
y ∈ Rk.

In this setting the tests {dη, η ≥ 0} now take the form

dη(y) = 0 iff f1(y) < ηf0(y)

iff
∫

Θ1

ft(y)dK(t) < η

∫
Θ0

ft(y)dK(t). (3.12)
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The cost incurred for making decisions is quantified by the mapping C : Θ×
{0, 1} → R with the interpretation that

C(θ,d) =

(
Cost incurred for deciding d

when ϑ = θ

)
,

θ ∈ Θ
d = 0, 1

With any admissible test d : Rk → {0, 1}, we define the expected cost

J(d) = E [C(ϑ, d(Y ))]

Note that

J(d) =

= (3.13)

As before, the Bayesian Problem PB is the minimization problem

PB : Minimize J(d) over d in D.

This amounts to finding an admissible test d? in D such that

J(d?) ≤ J(d), d ∈ D. (3.14)

Any admissible test d? which satisfies (3.14) is called a Bayesian test, and the
value

J(d?) = inf
d∈D

J(d) = min
d∈D

J(d) (3.15)

is known as the Bayesian cost.

3.4 The non-Bayesian case
In this formulation θ is an unknown parameter, and a Neyman-Pearson approach
seems warranted. However, since now composite hypotheses are involved, earlier
definitions given in Section 1.17 need to be modified.

Consider a test d : Rk → {0, 1} in D that tests H0 against the alternative H1.
We define its size to be the quantity

α(d) ≡ sup
θ∈Θ0

(
Pθ [d(Y ) = 0]

)
. (3.16)
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Note that with θ in Θ0, the probability Pθ [d(Y ) = 0] can be interpreted as the
probability of false alarm under the test d given that the hypothesis Hθ is indeed
correct. With α in [0, 1], let Dα denote the collection of all tests in D whose size
is no greater than α, namely,

Dα ≡ {d ∈ D : α(d) ≤ α} . (3.17)

The Neyman-Pearson formulation now takes the following form: For α in
[0, 1], find a test dNP(α) in Dα such that

Pθ [d(Y ) = 1] ≤ Pθ [dNP(α)(Y ) = 1] ,
θ ∈ Θ1,
d ∈ Dα.

(3.18)

Such a test dNP(α), when it exists, is called a Uniformly Most Powerful (UMP)
test of size α.

3.5 The non-Bayesian case – UMP tests
As will become shortly apparent, a UMP test may not always exist. To get an
idea of the possible subtleties, consider the situation where the hypothesis H0 and
H1 are simple and composite, respectively, say Θ0 = {θ0} and θ0 /∈ Θ1. In this
setting the definition of Dα now reduces to

Dα ≡ {d ∈ D : Pθ0 [d(Y ) = 0] ≤ α} .

Fix θ1 in Θ1. Recall that the Neyman-Pearson approach to the simple hypoth-
esis testing problem

H1 : Y ∼ Fθ1
H0 : Y ∼ Fθ0 .

(3.19)

leads to the test dNP(α; θ1) in Dα characterized by

Pθ0 [dNP(α; θ1)(Y ) = 1] = α

and
Pθ1 [d(Y ) = 1] ≤ Pθ1 [dNP(α; θ1)(Y ) = 1] , d ∈ Dα.

However, there is a priori no reason to expect that for any θ̃1 6= θ1 in Θ1, the
Neyman-Pearson test dNP(α; θ̃1) also solves the problem

Maximize Pθ1 [d(Y ) = 1] over d in Dα
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In fact this will happen if the tests dNP(α; θ1) and dNP(α; θ̃1) satisfy

Pθ1 [dNP(α; θ1)(Y ) = 1] = Pθ1
[
dNP(α; θ̃1)(Y ) = 1

]
and

Pθ̃1 [dNP(α; θ1)(Y ) = 1] = Pθ̃1
[
dNP(α; θ̃1)(Y ) = 1

]
More generally, a test d? : Rk → {0, 1} in Dα is UMP of size α if

α(d?) = α

and
Pθ [d?(Y ) = 1] = Pθ [dNP(α; θ1)(Y ) = 1] , θ ∈ Θ1.

This is clearly a non-trivial restriction on the problem. It is therefore not surprising
that UMP tests do not always exist. This is discussed on an example later on in
Section 3.6.

Theorem 3.5.1 Let H0 be a simple hypothesis and let H1 be a composite hy-
pothesis. A UMP test of size α exists if and only if the Neyman-Pearson tests
{dNP(α;
myvectheta), θ ∈ Θ1} can be completely specified without knowledge of the
parameter θ, i.e., the Borels subsets

C(dNP(α; θ)) =
{
y ∈ Rk : dNP(α;θ)(y) = 0

}
, θ ∈ Θ1

do not depend on θ as it ranges over Θ1.

Proof. If a UMP test of size α exists, say d?α, then

Pθ0
[d?α(Y ) = 1] = α

and

Pθ [d(Y ) = 1] ≤ Pθ [d?α(Y ) = 1] ,
θ ∈ Θ1,
d ∈ Dα.

Conversely, if the set C(dNP(α; θ)) is independent of θ in Θ1, set

C?
α ≡

{
y ∈ Rk :

}
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3.6 The non-Bayesian case – An example
We illustrate the developments of Section with an example. With θ arbitrary in R,

Hθ : Y ∼ N(θ, 1)

so that Fθ admits the density fθ : R→ R+ given by

fθ(y) =
1√
2π
e−

1
2

(y−θ)2 , y ∈ R.

With distinct θ0 and θ1 in R, consider the Neyman-Pearson formulation for the
binary hypothesis problem

H1 : Y ∼ N(θ1, 1)
H0 : Y ∼ N(θ0, 1)

(3.20)

As shown in Section 1.19 this problem has a complete solution: Fix λ > 0. The
test dλ : R→ {0, 1} takes the form

dλ(y) = 0 iff
1√
2π
e−

1
2

(y−θ1)2 < λ
1√
2π
e−

1
2

(y−θ0)2

iff (y − θ0)2 < 2 log λ+ (y − θ1)2

iff 2y(θ1 − θ0) < 2 log λ+ θ2
1 − θ2

0 (3.21)

Two cases arise: If θ0 < θ1, then

dλ(y) = 0 iff y <
log λ

θ1 − θ0

+
θ1 + θ0

2
(3.22)

Then, by standard arguments we get

Pθ0 [dλ(Y ) = 1] = Pθ0
[
Y ≥ log λ

θ1 − θ0

+
θ1 + θ0

2

]
= Pθ0

[
Y − θ0 ≥

log λ

θ1 − θ0

+
θ1 − θ0

2

]
= 1− Φ

(
log λ

θ1 − θ0

+
θ1 − θ0

2

)
. (3.23)

If θ1 < θ0, then

dλ(y) = 0 iff y >
log λ

θ1 − θ0

+
θ1 + θ0

2
. (3.24)
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This time we find

Pθ0 [dλ(Y ) = 1] = Pθ0
[
Y ≤ log λ

θ1 − θ0

+
θ1 + θ0

2

]
= Pθ0

[
Y − θ0 ≤

log λ

θ1 − θ0

+
θ1 − θ0

2

]
= Φ

(
log λ

θ1 − θ0

+
θ1 − θ0

2

)
. (3.25)

Fix α in (0, 1). The Neyman-Pearson test of size α for testing Hθ1 vs. Hθ0

is the test dλ(θ1,θ0;α) where λ(θ1, θ0;α) is that value of λ > 0 determined by
Pθ0 [dλ(Y ) = 1] = α.

If θ0 < θ1, then

log λ(θ1, θ0;α)

θ1 − θ0

+
θ1 − θ0

2
= Φ−1(1− α)

and the test dλ(θ1,θ0;α) is given by

dλ(θ1,θ0;α)(y) = 0 iff y < θ0 + Φ−1 (1− α) .

If θ1 < θ0, then
log λ(θ1, θ0;α)

θ1 − θ0

+
θ1 − θ0

2
= Φ−1(α)

and the test dλ(θ1,θ0;α) is given by

dλ(θ1,θ0;α)(y) = 0 iff y > θ0 + Φ−1 (α) .

We now consider four different situations, each associated with different sets
Θ0 and Θ1.

Case I: Θ0 = {θ0} and Θ1 = (θ0,∞)

Case II: Θ0 = {θ0} and Θ1 = (−∞, θ0)

Case III: Θ0 = {θ0} and Θ1 = R− {θ0}
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Case IV: Θ0 = (−∞, θ0] and Θ1 = (θ0,∞) Fix σ arbitrary in Θ0, so σ ≤ θ0.
Consider now the composite hypothesis testing problem The composite binary
hypothesis testing problem is concisely denoted by

H1 : Y ∼ N(θ, 1), θ ∈ Θ1

H0 : Y ∼ N(σ, 1)
(3.26)

For this problem we have seen that a UMP test of size α exists; it was discussed
in Case I, and is identified as the test d?(α;σ) : Rk → {0, 1} given by

d?(α;σ)(y) = 0 iff y < σ + Φ−1(1− α)

Thus, for every θ in Θ1, it holds that

Pθ [d?(α;σ)(Y ) = 1] = Pθ
[
Y ≥ σ + Φ−1(1− α)

]
≥ Pθ [d(Y ) = 1] (3.27)

for every test d such that
Pσ [d(Y ) = 1] ≤ α.

Recall that

Dα =

{
d ∈ D : sup

σ∈Θ0

(Pσ [d(Y ) = 1]) ≤ α

}
=

{
d ∈ D : sup

σ≤θ0
(Pσ [d(Y ) = 1]) ≤ α

}
. (3.28)

For any d in Dα, the following statement holds: For every θ in Θ1, we have

Pθ [d(Y ) = 1] ≤ Pθ
[
Y ≥ σ + Φ−1(1− α)

]
, σ ≤ θ0

Thus, for every σ ≤ θ0, the rule

d?(α;σ)(y) = 0 iff y < σ + Φ−1(1− α)

is a candidate for the UMP test. Next we show that only when σ = θ0, does this
rule belong to Dα, in which case it is the UMP test.

With σ < θ0, we consider the quantity

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
, σ′ ≤ θ0
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Lemma 3.6.1 We have

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
< α if σ′ < σ < θ0

= α if σ′ = σ
> α if σ < σ′ ≤ θ0.

(3.29)

Proof. We consider the three cases separately. Note that for arbitrary σ and σ′ in
R we always have

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
= Pσ′

[
Y ≥ σ′ + (σ − σ′) + Φ−1(1− α)

]
= Pσ′

[
Y − σ′ ≥ (σ − σ′) + Φ−1(1− α)

]
= 1− Φ

(
(σ − σ′) + Φ−1(1− α)

)
. (3.30)

Also recall that
Φ
(
Φ−1(1− α)

)
= 1− α.

If σ′ < σ < θ0, then

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
< 1− Φ

(
Φ−1(1− α)

)
by monotonicity since Φ (Φ−1(1− α)) < Φ ((σ − σ′) + Φ−1(1− α)). Thus,

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
< α.

Next, If σ′ = σ, then

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
= 1− Φ

(
Φ−1(1− α)

)
= α.

Finally, if σ < σ′ ≤ θ0, then

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
> 1− Φ

(
Φ−1(1− α)

)
by monotonicity since Φ (Φ−1(1− α)) > Φ ((σ − σ′) + Φ−1(1− α)). This time
we get

Pσ′
[
Y ≥ σ + Φ−1(1− α)

]
> α.

This establishes the desired result.

In generalizing theorem to both hypotheses being composite
There exists θ? in Θ0 with dNP for θ?0 vs θ ∈ Θ1 which is independent of θ in

Θ1.
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Chapter 4

Analysis

4.1 Convex functions
Let I denote an interval in R. A function g : I → R is said to be convex if for
every x0 and x1 in I , it holds that

g((1− λ)x0 + λx1) ≤ (1− λ)g(x0) + λg(x1), λ ∈ [0, 1]. (4.1)

A function g : I → R is said to be concave if the function −g is convex. Here are
some well-known facts concerning convex functions.

With x < y < z in I , write

y = (1− λ)x+ λz

with
λ =

y − x
z − x

.

It is plain that λ is an element of (0, 1). Therefore,

g(y) ≤ (1− λ)g(x) + λg(z)

=
z − y
z − x

g(x) +
y − x
z − x

g(z) (4.2)

so that

g(y)− g(x) ≤ z − y
z − x

g(x) +
y − x
z − x

g(z)− g(x)

=

(
y − x
z − x

)
(g(z)− g(x)) . (4.3)
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It follows that
g(y)− g(x)

y − x
≤ g(z)− g(x)

z − x
.

Fact 4.1.1 If the mapping g : I → R is convex on an interval I , then it is also
continuous on the interior of I .

Proof.

Fact 4.1.2 If the mapping g : I → R is convex function on some interval I , then
its left and right-derivatives always exist at every point in I (whenever appropri-
ate).

Proof. The existence of the right-derivative at x in I is a simple consequence of
the monotonicity

g(y)− g(x)

y − x
≤ g(z)− g(x)

z − x
,

x < y < z
x, y, z ∈ I


