Problem 2.1
Suppose \(x \) and \(y \) are statistically independent random variables with density functions

\[
p_x(x) = \frac{1}{2} \delta(x + 1) + \frac{1}{2} \delta(x - 1),
\]

and

\[
p_y(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right).
\]

Let \(z = x + y \) and \(w = xy \).

(a) Find \(p_z(z) \) the probability density function for \(z \).

(b) Find the conditional probability density functions \(p_{z|x}(z|x = -1) \) and \(p_{z|x}(z|x = +1) \).

(c) Find the mean values \(\bar{x} = m_x \) and \(\bar{y} = m_y \), the variances \(\sigma_x^2 \) and \(\sigma_w^2 \), and the covariance \(\lambda_{yw} \). Are \(y \) and \(w \) uncorrelated random variables? Are \(y \) and \(w \) statistically independent random variables?

(d) Are \(y \) and \(w \) Gaussian random variables? Are they jointly Gaussian? Explain.

Problem 2.2
Let \(\mathbf{x} = [x_1 \ x_2]^T \) be a zero-mean Gaussian random vector with covariance matrix

\[
\mathbf{\Lambda}_x = \begin{bmatrix} 34 & 12 \\ 12 & 41 \end{bmatrix}.
\]

(a) Verify that \(\mathbf{\Lambda}_x \) is a valid covariance matrix.

(b) Find the marginal probability density function for \(x_1 \). Find the probability density function for \(y = 2x_1 + x_2 \).
(c) Find a linear transformation defining a new random vector
\[x' = \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = P \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
so that \(x'_1 \) and \(x'_2 \) are statistically independent and so that
\[PP^T = I, \]
where \(I \) is the 2 \(\times \) 2 identity matrix.

Problem 2.3

Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence of random variables with identical means \(\bar{x}_i = m \), and identical variances \(\text{var} x_i = \sigma^2 \). We define the sample mean and the sample mean-square of the first \(N \) of the \(x_i \)'s as follows

\[
\hat{m}_N = \frac{1}{N} \sum_{i=1}^{N} x_i \quad \text{sample mean};
\]
\[
\hat{\sigma}^2_N = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \quad \text{sample mean-square}.
\]

(a) Suppose that the \(x_i \)'s are uncorrelated random variables. Find the mean and the variance of the sample mean. Show that
\[
\lim_{N \to \infty} E \left[(\hat{m}_N - m)^2 \right] = 0,
\]
and use this result to deduce that
\[
\lim_{N \to \infty} \Pr[|\hat{m}_N - m| > \epsilon] = 0, \quad \text{for any } \epsilon > 0.
\]

(b) Suppose that the \(x_i \)'s are statistically independent zero-mean Gaussian random variables. Find the mean and variance of the sample mean-square. Show that
\[
\lim_{N \to \infty} E \left[(\hat{\sigma}_N^2 - \sigma^2)^2 \right] = 0.
\]

(c) Suppose that the \(x_i \)'s are statistically independent zero-mean Gaussian random variables. Are \(\hat{m}_N \) and \(\hat{\sigma}_N^2 \) Gaussian random variables? Explain.
Problem 2.4
Let \(\mathbf{x} \) be an \(N \)-dimensional zero-mean random vector whose covariance matrix has eigenvalues
\[\lambda_1 > \lambda_2 > \cdots > \lambda_N , \]
and corresponding eigenvectors
\[\phi_1, \phi_2, \cdots, \phi_N . \]
Suppose we wish to approximate \(\mathbf{x} \) as a (scalar) random variable \(b \) times a deterministic \(N \)-dimensional vector \(a \) (i.e., \(b \mathbf{a} \)). We are interested in finding the “best” \(b \) and \(a \), so that \(b \mathbf{a} \) is as “close” (in some appropriate sense) to \(\mathbf{x} \) as possible.

(a) Given a realization \(\mathbf{x} = \mathbf{x} \), determine
\[b_{\text{opt}} = \arg \min_{b \in \mathbb{R}} ||\mathbf{x} - b \mathbf{a}|| , \]
where \(||\cdot|| \) is the Euclidean norm on \(\mathbb{R}^N \), i.e., \(||\mathbf{z}|| = \mathbf{z}^T \mathbf{z} \). Find an explicit expression for \(b_{\text{opt}}(\mathbf{x}) \) in terms of \(\mathbf{x} \) and \(\mathbf{a} \). Note that, with \(\mathbf{x} \) viewed as a random variable, the optimal \(b_{\text{opt}} \) is also a random variable.

(b) Let \(b_{\text{opt}} \) be as defined in part (a). Now define
\[a_{\text{opt}} = \arg \min_{\mathbf{a} \in \mathbb{R}^N} E \left[||\mathbf{x} - b_{\text{opt}} \mathbf{a}||^2 \right] . \]
Show that
\[a_{\text{opt}} = \arg \max_{\mathbf{a} \in \mathbb{R}^N} \frac{\text{var} \mathbf{a}^T \mathbf{x}}{\mathbf{a}^T \mathbf{a}} . \]

(c) Determine
\[\max_{\mathbf{a} \in \mathbb{R}^N} \frac{\text{var} \mathbf{a}^T \mathbf{x}}{\mathbf{a}^T \mathbf{a}} \]
and indicate the value(s) of \(\mathbf{a} \) for which the maximum is achieved.

(d) Repeat part (c) when we impose the constraint that
\[\mathbf{a} \perp \phi_i \quad (i.e., \mathbf{a}^T \phi_i = 0 \text{ for } i = 1, 2, \cdots, k - 1), \]
for some \(k \geq 2 \). Again, indicate the value(s) of \(\mathbf{a} \) for which the maximum is achieved.
Problem 2.5
Let \(V \) denote a general inner-product space and let \(x, y \) denote elements of \(V \). Suppose we want to approximate \(x \) using a multiple of \(y \). That is, let \(\hat{x} = ay \); we want to find \(a \in \mathbb{R} \) so that \(\hat{x} \) is, in some sense, as close as possible to \(x \).

(a) Let \(e = x - \hat{x} = x - ay \). Show that
\[
J = ||e||
\]
is minimized over all possible values of \(a \) when
\[
< e, y >= 0
\]
(b) Find an explicit formula for \(a \) in terms of inner products involving \(x \) and \(y \).
(c) Give explicit formulas for \(a \) in the following two cases:
 (i) \(V = L^2(\mathbb{R}) \).
 (ii) \(V = L^2(\Omega) \). What is \(J \) in this case? (Do not leave your expressions of \(a \) and \(J \) in terms of \(< \cdot, \cdot > \)).

Problem 2.6
Let \(x, y, \) and \(z \) be zero-mean unit-variance random variables satisfying
\[
\text{var}[x + y + z] = 0
\]
Determine the covariance matrix of \(x, y, \) and \(z \); i.e., determine the matrix
\[
\begin{bmatrix}
E[x^2] & E[xy] & E[xz] \\
E[yz] & E[y^2] & E[yz] \\
E[xz] & E[zy] & E[z^2]
\end{bmatrix}
\]
Hint: Use vector space concepts.

Problem 2.7 (optional)
Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence of mutually independent Bernoulli random variables with probability mass functions
\[
\Pr[x_k = x] = \begin{cases}
1/2 & x \in \{-2^{-k}, 2^{-k}\} \\
0 & \text{otherwise}
\end{cases}
\]
Let \(\sigma_k^2 \) denote the variance of \(x_k \), and \(S_n = \sqrt{\sum_{k=1}^{n} \sigma_k^2} \), and consider the sequence of random variables
\[
z_n = \frac{1}{S_n} \sum_{k=1}^{n} x_k
\]
Show that, as \(n \to \infty \), \(z_n \) converges in distribution to a uniformly distributed random variable.