1. The sample space Ω being uncountable, it is not possible for a set E to be countable and for its complement E^c to be uncountable

1.a. (i) Obviously \emptyset and Ω belong to \mathcal{F}; (ii) Complementarity: Pick E in \mathcal{F}. If E is countable, then the complement of E^c, namely $(E^c)^c = E$, is also countable so $E^c \in \mathcal{F}$. If E^c is countable, then $E^c \in \mathcal{F}$ automatically; (iii) Closed under union: Pick E and F in \mathcal{F}. Two cases are possible when considering $E \cup F$: If both E and F are countable, then their union $E \cup F$ is also countable and is therefore an element of \mathcal{F}. If one of E and F has a countable complement, note that $(E \cup F)^c = E^c \cap F^c$ is countable (since one of E^c or F^c is countable), hence $E \cup F \in \mathcal{F}$.

1.b. (iv) Closed under countable union: Let $\{E_n, n = 1, 2, \ldots \}$ be a countable collection of events in \mathcal{F}. If E_n is a countable set for each $n = 1, 2, \ldots$, then the union $\bigcup_{n=1}^{\infty} E_n$ is also a countable set, hence is an element of \mathcal{F}. If one of the elements in the collection, say E_m for some $m = 1, 2, \ldots$, has a countable complement, then $(\bigcup_{n=1}^{\infty} E_n)^c = \bigcap_{n=1}^{\infty} E_n^c \subseteq E_m^c$ is a countable set and $\bigcup_{n=1}^{\infty} E_n$ is therefore an element of \mathcal{F}.

1.c. We begin with a simple fact:

Fact 0.1 Consider the events E and F in \mathcal{F}. If E^c and F^c are both countable, then they cannot be disjoint.

Proof. If $E \cap F = \emptyset$, then $(E \cap F)^c = E^c \cup F^c = \Omega$. But E^c and F^c being countable implies $E^c \cup F^c$ being countable, and this yields a contradiction since $E^c \cup F^c = \Omega$ with Ω assumed uncountable!

The conditions $\mathbb{P}[\emptyset] = 0$ and $\mathbb{P}[\Omega] = 1$ are immediate by definition. Pick a countable collection of events $\{F_i, i \in I\}$ in \mathcal{F} such that

$$F_i \cap F_j = \emptyset, \quad i \neq j, \quad i, j \in I.$$
There are two cases:

(i) The sets \(\{ F_i, \ i \in I \} \) are all countable: Then, \(F = \bigcup_{i \in I} F_i \) is countable, and noting that \(P[F_i] = 0 \) for each \(i \) in \(I \) and \(P[F] = 0 \), it is plain that \(P[F] = \sum_{i \in I} P[F_i] \).

(ii) Some of the \(\{ F_i, \ i \in I \} \) have a countable complement: By Fact 0.2, there can be only one such set under the condition that the events are pairwise disjoint. Thus, there exists a single index \(i^* \) in \(I \) such that \(F_{i^*}^c \) is countable and \(F_i \) is countable for all \(i \neq i^* \) in \(I \). As before, we see that \(F = \bigcup_{i \in I} F_i \) has a countable complement, so that \(P[F] = 1 \), while \(P[F_{i^*}] = 1 \) and \(P[F_i] = 0 \) for all \(i \neq i^* \) in \(I \). Obviously, \(P[F] = \sum_{i \in I} P[F_i] \) since

\[
\sum_{i \in I} P[F_i] = P[F_{i^*}] + \sum_{i \in I: i \neq i^*} P[F_i] = 1 + \sum_{i \in I: i \neq i^*} 0.
\]

2.

2.a. For experiment \(\mathcal{E}_1 \) a simple and natural model that will help you answer the question is as follows: Take \(\Omega = \{1, \ldots, P\}^\mathbb{N}_0 \), the collection of all infinite sequences drawn from the alphabet \(\{1, \ldots, P\} \) – Thus, an element \(\omega \) of \(\Omega \) is of the form \(\omega = (k_1, k_2, \ldots, k_n, \ldots) \) with \(k_1, k_2, \ldots, k_n, \ldots \) elements of \(\mathcal{P} \). Here, as for the experiment of throwing a coin infinitely often under identical and independent conditions, use \(F = \sigma(\mathcal{G}) \) where

\[
\mathcal{G} \equiv \{ A_n(k_n), \ k_n \in \mathcal{P} \}
\]

with

\[
A_n(k_n) = \{ \omega = (\omega_1, \omega_2, \ldots) \in \Omega : \omega_n = k_n \}, \quad k_n \in \mathcal{P}.
\]

The description of \(\mathcal{E}_1 \) suggests that the defining conditions for \(P_1 \) should be that

\[
P[A_n(k_n)] = \frac{1}{P}, \quad k_n \in \mathcal{P}, \quad n = 1, 2, \ldots \tag{1.1}
\]

and that for each \(n = 1, 2, \ldots \), the events \(A_n(k_n), \ldots, A_n(k_n) \) are mutually independent for arbitrary \(k_1, \ldots, k_n \) in \(\mathcal{P} \), namely

\[
P[\cap_{\ell=1}^n A_\ell(k_\ell)] = \prod_{\ell=1}^n P[A_\ell(k_\ell)] = \frac{1}{P^n}, \quad k_1 \in \mathcal{P}, \ldots, k_n \in \mathcal{P} \quad n = 1, 2, \ldots \tag{1.2}
\]

By Caratheodory’s Extension Theorem there exists a unique probability measure \(P \) on \(\mathcal{F} = \sigma(\mathcal{G}) \) that satisfies (1.1)-(1.2).

This model takes the position that one continues to draw the balls even after \(K \) distinct balls have been drawn. Another model could have been obtained by taking the set \(\Omega_1 \) to be the collection of all finite length sequences \((\omega_1, \ldots, \omega_n) \) drawn from \(\mathcal{P} \) satisfying the conditions

\[
\omega_i \in \mathcal{P}, \quad i = 1, \ldots, n
\]

and

\[
|\{\omega_1, \ldots, \omega_{n-1}\}| = K - 1 \quad \text{and} \quad \omega_n \notin \{\omega_1, \ldots, \omega_{n-1}\}.
\]
You might wonder why not use this model (as some of the students in the class have done) – after all it sticks very closely to the description of E_1. It is because calculations in that model are more difficult (with very few of the adopters correctly completing them).

With the first model suggested above, we note that $P_1[\Sigma_1 = S]$ cannot depend on the set S. Since there are $\binom{P}{K}$ such sets of size K (as order is not important), we immediately conclude that $P_1[\Sigma_1 = S] = \binom{P}{K}^{-1}$. Of course it is possible to calculate this quantity by brute force – Try it!

2.b. For E_2 take Ω to be the collection of all ordered subsets of size K made up of K distinct elements drawn from the set P – there are $K!\binom{P}{K} = P(P-1)\ldots(P-K+1)$ such ordered subsets! Since Ω_2 is finite we take $F_2 = P(\Omega_2)$. To define P_2 we need only define it on singletons. To do so, pick $\alpha = (\alpha_1, \ldots, \alpha_K)$ in Ω_2, and define the events

$$A_k(\alpha_k) = \{\omega \in \Omega_2 : \omega_k = \alpha_k\}, \quad k = 1, 2, \ldots, K.$$

In other words, $A_k(\alpha_k)$ is the event where the k^{th} draw is α_k. The description of E_2 leads to

$$P_2[A_1(\alpha_1)] = \frac{1}{P}$$

(reflecting the fact that the first ball is drawn uniformly from P) and

$$P_2[A_k(\alpha_k)|A_1(\alpha_1)\cap \ldots \cap A_{k-1}(\alpha_{k-1})] = \frac{1}{P - (k-1)}, \quad k = 2, \ldots, K$$

(reflecting the fact that once the distinct balls $\alpha_1, \ldots, \alpha_{k-1}$ have been drawn, there remains $P - (k-1)$ balls, and the k^{th} is drawn uniformly at random from these remaining balls). To conclude, since

$$\{\alpha\} = \cap_{k=1}^K A_k(\alpha_k)$$

we conclude that

$$P_2[\{\alpha\}] = P_2[\cap_{k=1}^K A_k(\alpha_k)] = \prod_{k=2}^K P_2[A_k(\alpha_k)|A_{k-1}(\alpha_{k-1})] \cdot P_2[A_1(\alpha_1)] = \prod_{k=1}^K \frac{1}{P - (K-k)} = \frac{(P-K)!}{P!}.$$

This final expression is a consequence of the assumptions of the model (implied by the description of E_2) and not an assumption as many seem to have implied in their answers. Finally,

$$P_2[\Sigma_2 = S] = \sum_{\omega \in \Omega_2 : \text{Set}[\omega] = S} P_2[\{\omega\}] = \frac{(P-K)!}{P!} \cdot K! = \binom{P}{K}^{-1}$$

where $\text{Set}[\omega]$ denotes the unordered set associated with ω.

2.c. These probabilities are identical as the calculations have revealed. But this could have been guessed in advance through the following argument: In each experiment,
without constructing the appropriate probability model, it is plain that the mechanics
of the experiment do not bias the outcome as far as the \(K \) elements finally collected
are concerned. Thus, in each experiment, any set \(S \) is ascribed the same likelihood of
occurrence. Since there are \(\binom{P}{K} \) such sets, in both cases the answer will be \(\binom{P}{K}^{-1}! \)

3.

3.a. A natural model for this situation is the following: Imagine that the hats and
their owners have been labelled 1, \ldots, \(n \) as they are handed out to the coat check: The
hat labelled \(k \) is that of the \(k^{th} \) person (who receives label \(k \)). Thus, at the end of the
evening, when the hats are returned, let \(\omega(k) \) be the label of the person that receives the
hat labelled \(k \). Obviously, \(\omega = (\omega(1), \ldots, \omega(n)) \) is a permutation of \(\{1, \ldots, n\} \), and it is
natural to take \(\Omega \) to be the collection of all permutations of \(\{1, \ldots, n\} \). To completely
specify the model, set \(F = \mathcal{P}(\Omega) \) and use the uniform probability assignment for \(\mathcal{P} \), i.e.,

\[
\mathbb{P}\left[\{\omega\}\right] = \frac{1}{|\Omega|} = \frac{1}{n!}, \quad \omega \in \Omega.
\]

3.b. For each \(k = 1, \ldots, n \), we have \(X_k = 1_E[k] \) where \(E[k] \equiv \{\omega \in \Omega : \omega(k) = k\} \). Note
that \(|E[k]| = (n-1)! \) so that

\[
\mathbb{P}[X_k = 1] = \frac{|E[k]|}{n!} = \frac{1}{n}.
\]

and

\[
\mathbb{E}[S_n] = \sum_{k=1}^{n} \mathbb{E}[X_k] = 1.
\]

3.c. For distinct \(k, \ell = 1, \ldots, n \), we have \(|E[k] \cap E[\ell]| = (n-2)! \) so that

\[
\mathbb{P}[X_k = 1, X_\ell = 1] = \frac{|E[k] \cap E[\ell]|}{n!} = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}.
\]

Obviously

\[
\mathbb{P}[X_k = 1] \cdot \mathbb{P}[X_\ell = 1] = \frac{1}{n^2} \neq \frac{1}{n(n-1)} = \mathbb{P}[X_k = 1, X_\ell = 1]
\]

and the rvs \(X_k \) and \(X_\ell \) are not independent. We also get

\[
\text{Cov}[X_k, X_\ell] = \mathbb{P}[X_k = 1, X_\ell = 1] - \mathbb{P}[X_k = 1] \cdot \mathbb{P}[X_\ell = 1]
= \frac{1}{n(n-1)} - \frac{1}{n^2}
= \frac{n - (n-1)}{n^2(n-1)} = \frac{1}{n^2(n-1)} \neq 0 \quad (1.4)
\]

and the rvs \(X_k \) and \(X_\ell \) are not uncorrelated.
3.d. By the standard expression for the variance of a sum, we get
\[\text{Var} [S_n] = \sum_{k=1}^{n} \text{Var} [X_k] + \sum_{k=1}^{n} \sum_{\ell \neq k} \text{Cov} [X_k, X_\ell] \]
\[= n \left(1 - \frac{1}{n} \right) \frac{1}{n} + n(n-1) \frac{1}{n^2(n-1)} \]
\[= 1. \]

(1.5)

3.e. Note that
\[\mathbb{P} [S_n \geq 11] = \mathbb{P} [S_n - 1 \geq 10] \]
\[\leq \mathbb{P} [\|S_n - \mathbb{E} [S_n]\| \geq 10] \quad [\text{Recall that } \mathbb{E} [S_n] = 1] \]
\[\leq \mathbb{E} [\|S_n - \mathbb{E} [S_n]\|^2] \quad [\text{By Byenaimé-Tchebychev}] \]
\[= \frac{\text{Var} [S_n]}{100} = \frac{1}{100} = 0.01. \]

(1.6)

4.

4.a. Note that the probability distributions of \(X \) and \(Y \) coincide under the condition \(X = Y \) a.s.: Indeed, we have \(F_X = F_Y \) since
\[\mathbb{P} [X \leq x] = \mathbb{P} [X = Y, X \leq x] + \mathbb{P} [X \neq Y, X \leq x] \]
\[= \mathbb{P} [X = Y, Y \leq x] \]
\[= \mathbb{P} [X = Y, Y \leq x] + \mathbb{P} [X \neq Y, Y \leq x] \]
\[= \mathbb{P} [Y \leq x], \quad x \in \mathbb{R}. \]

(1.7)

Let \(F_{\text{Common}} \) denote this common probability distribution function. Next we have
\[F_{X,Y}(x,y) = \mathbb{P} [X \leq x, Y \leq y] \]
\[= \mathbb{P} [X = Y, X \leq x, Y \leq y] + \mathbb{P} [X \neq Y, X \leq x, Y \leq y] \]
\[= \mathbb{P} [X = Y, X \leq x, Y \leq y] \]
\[= \mathbb{P} [X = Y, X \leq x, X \leq y] \]
\[= \mathbb{P} [X = Y, X \leq \min(x,y)] \]
\[= \mathbb{P} [X = Y, X \leq \min(x,y)] + \mathbb{P} [X \neq Y, X \leq \min(x,y)] \]
\[= \mathbb{P} [X \leq \min(x,y)] \]
\[= F_{\text{Common}} (\min(x,y)). \]

(1.8)

4.b. Assume that the function \(F : \mathbb{R}^2 \to [0,1] \) given by \(F(x,y) = \) for all \(x \) and \(y \) in \(\mathbb{R} \), is indeed the joint probability distribution of a pair of rvs \(U \) and \(V \) defined on some probability triple \((\Omega, \mathcal{F}, \mathbb{P})\). Thus, under the enforced assumptions we have
\[F(x,y) = \mathbb{P} [U \leq x, V \leq y] = K(\min(x,y)), \quad x, y \in \mathbb{R} \]
By letting \(y \) (resp. \(x \)) go to infinity with \(x \) (\(y \)) fixed we get
\[
\mathbb{P}[U \leq x] = K(x), \quad x \in \mathbb{R}
\]
and
\[
\mathbb{P}[V \leq y] = K(y), \quad y \in \mathbb{R}
\]
Hence, both \(U \) and \(V \) have the same probability distribution function \(K : \mathbb{R} \to [0, 1] \) under \(\mathbb{P} \). More precisely, the function \(K : \mathbb{R} \to [0, 1] \) is a probability distribution function!

Recall that the function \(F : \mathbb{R}^2 \to [0, 1] \) is a probability distribution function if and only if (i) right-continuous in each component (ii) has a left-limit in each component (iii) \(\lim_{\min(x,y) \to -\infty} F(x, y) = 0 \) and \(\lim_{\min(x,y) \to \infty} F(x, y) = 1 \) and (iv) the conditions
\[
F(b, \beta) - F(b, \alpha) - (F(a, \beta) - F(a, \alpha)) \geq 0, \quad \alpha \leq b \leq \beta
\]
hold where (iv) amounts to the condition
\[
\mathbb{P}[a < U \leq b, \alpha < V \leq \beta] \geq 0, \quad \alpha \leq b \leq \beta.
\]

Conditions (i)-(iii) are inherited from the probability distribution function \(K : \mathbb{R} \to [0, 1] \).

The last condition (iv)
\[
K(\min(b, \beta)) - K(\min(b, \alpha)) \geq K(\min(a, \beta)) - K(\min(a, \alpha)), \quad \alpha \leq b \leq \beta
\]
is equivalent to the monotonicity of the probability distribution function \(K : \mathbb{R} \to [0, 1] \).

4.c. Assume that the function \(F : \mathbb{R}^2 \to [0, 1] \) given by \(F(x, y) = K(\min(x, y)) \) for all \(x \) and \(y \) in \(\mathbb{R} \), is indeed the joint probability distribution of a pair of rvs \(U \) and \(V \) defined on some probability triple \((\Omega, \mathcal{F}, \mathbb{P})\). We have seen earlier that \(\mathbb{P}[U \leq x] = K(x) \) for all \(x \) in \(\mathbb{R} \) and \(\mathbb{P}[V \leq y] = K(y) \) for all \(y \) in \(\mathbb{R} \). Therefore, the rvs \(U \) and \(V \) are independent if and only if
\[
\mathbb{P}[U \leq x, V \leq y] = \mathbb{P}[U \leq x] \cdot \mathbb{P}[V \leq y] = K(x)K(y), \quad x, y \in \mathbb{R}
\]
while
\[
\mathbb{P}[U \leq x, V \leq y] = K(\min(x, y)), \quad x, y \in \mathbb{R}.
\]
Therefore, we have independence if and only if
\[
K(\min(x, y)) = K(x)K(y), \quad x, y \in \mathbb{R}
\]
With \(x = y \), we get
\[
K(x) = K(x)^2, \quad x \in \mathbb{R}
\]
so that either \(K(x) = 0 \) or \(K(x) = 1 \). But, \(K : \mathbb{R} \to [0, 1] \) being a probability distribution function (by Part b), we conclude that \(K(x) = 0 \) if \(x < x^* \) and \(K(x) = 1 \) if \(x^* \leq x \) for some finite \(x^* \).
Hence, if the rvs U and V are independent, they must be degenerate in the sense that $U = x^*$ and $V = x^*$ a.s. for some finite x^*. Conversely, if $U = x^*$ and $V = x^*$ a.s. for some finite x^*, then the rvs U and V are automatically independent and they satisfy the requirement $P[U \leq x, V \leq y] = K(\min(x, y))$ for all x and y in \mathbb{R}.

4.d. Assume that the function $F : \mathbb{R}^2 \to [0, 1]$ given by $F(x, y) = \mathbb{P}[U \leq x, V \leq y] = K(\min(x, y))$, $x, y \in \mathbb{R}$.

By letting y (resp. x) go to infinity while keeping x (resp. y) fixed we get

$$\mathbb{P}[U \leq x] = K(x), \quad x \in \mathbb{R}$$

and

$$\mathbb{P}[V \leq y] = K(y), \quad y \in \mathbb{R}$$

Also, with $x = y = t$, we get

$$\mathbb{P}[\max(U, V) \leq t] = \mathbb{P}[U \leq t, V \leq t] = K(t), \quad t \in \mathbb{R}$$

so the three rvs U, V and $\max(U, V)$ have the same probability distribution $K : \mathbb{R} \to [0, 1]$. Thus, for each t in \mathbb{R}, we have

$$0 = \mathbb{P}[U \leq t] - \mathbb{P}[\max(U, V) \leq t]$$

$$= \mathbb{P}[U \leq t] - \mathbb{P}[U \leq t, V \leq t]$$

$$= \mathbb{P}[U \leq t < V], \quad t \in \mathbb{R}. \quad (1.10)$$

Consider ω in Ω such that $U(\omega) < V(\omega)$. It necessarily exists t in \mathbb{Q} such that $U(\omega) < t < V(\omega)$, whence

$$[U < V] = \bigcup_{t \in \mathbb{Q}} [U < t < V]$$

and a union bound argument shows that

$$\mathbb{P}[U < V] = \mathbb{P}[\bigcup_{t \in \mathbb{Q}} [U < t < V]]$$

$$\leq \sum_{t \in \mathbb{Q}} \mathbb{P}[U < t < V] = 0 \quad (1.11)$$

In other words, $\mathbb{P}[U < V] = 0$. By symmetry, $\mathbb{P}[V < U] = 0$, whence $\mathbb{P}[U \neq V] = 0$.

If $\mathbb{E}[U]$ exists and is finite (a condition on K), then the following argument could be used: Obviously, $U \leq \max(U, V)$ and $V \leq \max(U, V)$. Assume that so does $\mathbb{E}[U]$ and $\mathbb{E}[\max(U, V)]$, then $\mathbb{E}[\max(U, V) - U] = \mathbb{E}[\max(U, V)] - \mathbb{E}[U] = \mathbb{E}[U] - \mathbb{E}[U] = 0$ with $\max(U, V) - U \geq 0$. It follows that $\max(U, V) = U$ a.s. with a similar argument for $\max(U, V) = V$ a.s. We conclude that $U = V$ a.s.

5. This problem relies on the following basic facts:
Fact 0.2 The expectation of any bounded rv \(\eta : \Omega \to \mathbb{R} \) (i.e., \(\mathbb{P}[|\eta| \leq B] = 1 \) for some \(B > 0 \)) always exists and is finite with \(|E[\eta]| \leq B \).

Fact 0.3 If the rv \(\eta : \Omega \to \mathbb{R}^p \) is a symmetric rv (i.e., the rvs \(\eta \) and \(-\eta \) have the same probability distribution), then \(g(\eta) \) and \(g(-\eta) \) have the same probability distribution for any Borel mapping \(g : \mathbb{R}^p \to \mathbb{R}^q \).

Proof. For any mapping \(g : \mathbb{R} \to \mathbb{R} \), we have
\[
\mathbb{P}[g(-\xi) \in B] = \mathbb{P}[-\xi \in g^{-1}(B)] = \mathbb{P}[\xi \in g^{-1}(B)] \quad \text{[By symmetry}} \xi =_{st} -\xi] = \mathbb{P}[g(\xi) \in B]. \tag{1.12}
\]
In other words, the rvs \(g(\xi) \) and \(g(-\xi) \) have identical distribution.

Fact 0.4 If the rv \(\eta : \Omega \to \mathbb{R} \) is a symmetric rv, then it is always the case that \(E[\eta^+] = E[\eta^-] \). Only when the common value of these expectations is \textbf{finite} is it the case that \(E[\eta] = E[\eta^+] - E[\eta^-] = 0! \)

Proof. If the rv \(\eta : \Omega \to \mathbb{R} \) is a symmetric rv, then \(\xi^+ \) and \(\xi^- \) have the same distribution by Fact 0.3. Hence, \(E[\eta^+] = E[\eta^-] \), these expectations existing because the rvs are non-negative.

5.a. With \(X \equiv \sin (\xi) \), we have \(|X| \leq 1 \), and \(E[X] \) always exists and is finite. With
\[
Y \equiv \frac{\xi}{1+\xi^2},
\]
it is plain that we also have \(|Y| \leq 1 \) – Remember that \(|u| \leq 1+u^2 \) for each \(u \) in \(\mathbb{R} \). Thus, \(E[Y] \) always exists and is finite. With
\[
Z \equiv \xi \cdot \cos (\xi),
\]
it holds that \(|\cos (\xi)| \leq 1 \). However, unless additional conditions are imposed on \(\xi \), it is possible that \(E[Z] \) may not exist. It is easy to check that the rv \(Z \) is a symmetric rv when \(\xi \) is a symmetric rv, and \(E[Z] \) will not exist if and only if \(E[Z^+] = E[Z^-] = \infty \) (see below).

5.b. Obviously \(\sin (-\xi) = -\sin (\xi) \) while \(\sin (-\xi) =_{st} \sin (\xi) \). The expectations exist by boundedness, so \(E[-\sin (\xi)] = E[\sin (\xi)] \), whence \(E[X] = 0 \).

5.c. In a similar way, \(\frac{-\xi}{1+(-\xi)^2} \) while \(\frac{-\xi}{1+(\xi)^2} =_{st} \frac{\xi}{1+|\xi|^2} \). The expectations exist by boundedness, so \(E\left[\frac{-\xi}{1+\xi^2}\right] = E\left[\frac{\xi}{1+\xi^2}\right] \), whence \(E\left[\frac{\xi}{1+\xi^2}\right] = 0 \).
5.d. Consider a discrete rv ξ with support $S = 2\pi \mathbb{Z}$ and pmf given by

$$p_{\xi}(2\pi z) = \frac{C}{1 + |z|^2}, \quad z \in \mathbb{Z}$$

with $C > 0$ determined by

$$C \left(1 + 2 \sum_{z=1}^{\infty} \frac{1}{1 + |z|^2}\right) = 1.$$

Note that

$$\mathbb{E}[Z^\pm] = C \sum_{z=1}^{\infty} 2\pi z \cdot \cos(\pm 2\pi z) \frac{1}{1 + z^2} = 2\pi C \sum_{z=1}^{\infty} \frac{z}{1 + z^2} = \infty \quad (1.13)$$

The divergence of the series arises from the fact that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. In other words, $\mathbb{E}[Z]$ does not exist since $\mathbb{E}[Z^+] - \mathbb{E}[Z^-]$ cannot be defined.

However, if in addition of ξ having a symmetric distribution, we assume $\mathbb{E}[|\xi|] < \infty$, then $|Z| \leq |\xi|$ and we conclude that $\mathbb{E}[|Z|] < \infty$, whence $\mathbb{E}[Z] = 0$ by earlier arguments.