Prob. 1.7

Draw <110> direction of diamond lattice.

This view is tilted slightly from (110) to show the alignment of atoms. The open channels are hexagonal along this direction.
Prob. 1.4

Calculate densities of Si and GaAs.

The atomic weights of Si, Ga, and As are 28.1, 69.7, and 74.9, respectively.

Si:

\[
\frac{8 \text{ atoms}}{a^3} = \frac{8}{(5.43 \times 10^{-8} \text{ cm})^3} = 5.0 \times 10^{31} \frac{\text{atom}}{\text{cm}^3}
\]

\[
\text{density} = \frac{5.0 \times 10^{31} \frac{\text{atom}}{\text{cm}^3} \times 28.1 \frac{\text{g}}{\text{atom}}}{6.02 \times 10^{23} \frac{\text{mol}}{\text{atom}}} = 2.33 \frac{\text{g}}{\text{cm}^3}
\]

GaAs:

\[
\frac{4 \text{ atoms}}{a^3} = \frac{4}{(5.65 \times 10^{-8} \text{ cm})^3} = 2.22 \times 10^{22} \frac{\text{atom}}{\text{cm}^3}
\]

Prob. 1.12

Find packing fraction of fcc unit cell.

- **nearest atom separation** = \(\frac{\sqrt{2}}{2} A = 3.54 \text{Å} \)
- **tetrahedral radius** = 1.77Å
- **volume of each atom** = 23.14Å³
- **number of atoms per cube** = \(6 \times \frac{1}{8} + 8 \times \frac{1}{8} = 4 \text{ atoms} \)
- **packing fraction** = \(\frac{23.14Å³ \times 4}{(5Å)^3} = 0.74 = 74\% \)

Prob. 1.12

Find atoms/cell and nearest neighbor distance for sc, bcc, and fcc lattices.

sc:

- **atoms/cell** = \(8 \times \frac{1}{8} = 1 \)
- **nearest neighbor distance** = \(a \)

bcc:

- **atoms/cell** = \(8 \times \frac{1}{8} + 1 = 2 \)
- **nearest neighbor distance** = \(a \sqrt{3} \)

fcc:

- **atoms/cell** = \(8 \times \frac{1}{8} + 6 \times \frac{1}{8} = 4 \)
- **nearest neighbor distance** = \(a \sqrt{2} \)