Instructor:
Babis Papadopoulos
Assistant Professor, Dept. of Electrical & Computer Engineering
A.V. Williams Building, Room 1423

e-mail: babis@eng.umd.edu
tel: (301) 405-3743

office hours: Wednesdays 1–2pm, AVW 1423 (regular office hours)
Tuesdays 2–3pm, AVW 2328 (group discussion)

Teaching Assistant:
Peerapol Tinnakornsrisuhpap

e-mail: peerapol@glue.umd.edu
tel: (301) 405-8823

office hours: (TBA) __________________________, AVW 1369.

The staff will be very available during their office hours and you are encouraged to come by to see us during the times indicated. While in an emergency Peerapol may be willing to meet briefly with you outside these hours, please be sensitive to the fact that he is also taking courses, writing a thesis, etc.
Course Synopsis:
ENEE 425 is a senior-level introduction to the fundamentals of deterministic discrete-time signal processing. The concepts and techniques we will develop are very versatile and powerful, and form the basis for an enormous class of algorithms used in an extraordinarily diverse range of applications. At the same time, everyone contemplating taking ENEE 425 should understand that this is an intense, fast-paced, and demanding subject. However, assuming you come with the right background (i.e., prerequisites) and are ready to make the serious commitment that the subject demands, it can be a very rewarding experience.

The development of the material that forms the basis of ENEE 425 has historically been driven mostly by applications. However, we emphasize that our focus on the course will not be on the applications—which form the basis for entire courses of their own—but on the common problem solving framework that they share. Nevertheless, we will cite various relevant applications as we develop the material and sometimes extract simplified examples from these contexts.

Prerequisites:
ENEE 322 is an official and essential prerequisite for ENEE 425. In general, ENEE 425 assumes fluency with signals and systems, of the form provided by an introductory-level course on signal and system theory such as ENEE 322, complex variables and some basic linear algebra. Equally important to the specific prerequisites, a certain level of maturity, dedication, and commitment to understanding the concepts in depth is expected of all who take the subject.

Lectures:
Mondays and Wednesdays 3:30pm–4:45pm, EAB 0307.

Attendance to lectures is assumed, but not formally recorded. Lectures work best when they are interactive, so your participation is important and strongly encouraged. Asking questions both in class and in office hours is a sign of engagement in the material, not an expression of weakness.

Required Text:

The majority of students that have (taken this course in the past and) used the above text as the required text have felt that, although fairly fast paced, the book serves as an excellent textbook for ENEE 425.

References:
A list of references on discrete-time signal processing, background material, and advanced topics is appended at the end of this handout.

Course Handouts:
Course handouts will be typically distributed at the beginning and/or end of lectures. Peerapol will have extra copies in case you did not pick a copy in class. Copies of these handouts will also be available on the course web site.
Problem Sets:

There will be quasi-weekly problem set assignments. Each problem set will include a collection of required problems (to be handed in), a random subset of which will be graded each week. Some assignments will also include one or two, often (but not always) more challenging, optional problems. You can make use of these optional problems when you think you might benefit from (and you have time for) extra practice with the material. Although these are not to be turned in, solutions to these problems will be provided along with the regular problems.

Problem sets must be handed in by the end of the class in which they are due. Note that problem set solutions will be available at the end of the due date lecture. Consequently, it is difficult and unfair to seriously evaluate late problem sets.

You are expected to do **all** the assigned problems. While the grade you get on your homework is only a minor percentage of your final grade, working through (and, yes, often struggling with) the homework is a crucial part of the learning process. As such, it will invariably have a major impact on your understanding of the material and, in turn, your exam performance and final grade. Moderate collaboration in the form of joint problem solving with one or two of your classmates is permitted provided that

- you struggle with the problems **on your own** prior to interacting with classmates.
- the write-up you submit **is your own**.

In making the exams and in assigning a final grade we will assume that you have worked **all** the problems.

Exams:

There will be three exams, all of which will take place in EAB 0307. The exam dates are as follows:

- **Exam 1:** Wednesday, October 16, 3:30–4:45pm;
- **Exam 2:** Wednesday, November 20, 3:30–4:45pm;
- **Final Exam:** Wednesday, December 18, 1:30pm–3:30pm.

All exams will be closed book. However, you will be allowed to bring **one** 8.5 × 11-inch sheet of notes (both sides) to Exam 1, **two** 8.5 × 11-inch sheets of notes (both sides) to Exam 2, and **three** 8.5 × 11-inch sheets of notes (both sides) to the final exam. Good exam problem suggestions from the class are always welcome (and come with an obvious benefit to you if your problem is chosen).

In the case of a dispute involving an exam grade, a **written** request to regrade must be submitted including a full explanation of the nature of the dispute.
Course Grade:

The final grade in the course is based upon our best assessment of your understanding of the material and your class participation during the semester. Roughly, the weights used in grade assignment are:

- Exams 1 and 2: 25% each
- Final exam: 40%
- Homework: 10%

However, other factors, such as interaction with the staff and participation in lecture, can make a significant difference in the final grade. In general, the process of assigning a final grade involves a lot of discussion among the staff and very often a careful review of the final exam is involved to examine the kinds of mistakes that were made. Although the focus of the course is learning, not grades, we know that the final grade is important to you, and we want you to know that we take the process seriously.

Disabilities:

If you have a disability, you should contact Dr. Papadopoulos at your earliest convenience.

Photograph:

To help us quickly get up to speed in matching names to faces, we will need to have a photo of each student in the class. We would like to have your photo in before Problem Set 1 is graded and returned. In the first couple of weeks, Peerapol will be taking pictures right after class. You can also email us electronic (e.g., scanned) photographs.

Course Web Site:

You may obtain electronic copies of course handouts in pdf format at the course web site:

http://www.ece.umd.edu/class/enee425

These handouts include problem sets, problem set solutions, and administrative announcements.
Course Syllabus:

I. Review of discrete-time signals and systems (2-3 lectures)
 - signals and systems; notation, properties
 - discrete-time LTI systems and properties; LCCDEs
 - frequency domain representations; DTFT; frequency response

II. The z-transform (3 lectures)
 - definition and relation to DTFT; region of convergence
 - the inverse z-transform; z-transform properties

III. Sampling of continuous-time waveforms (5 lectures)
 - Nyquist theorem; ideal C/D and D/C converters; A/D and D/A converters
 - DT processing of CT signals
 - multirate signal processing

IV. Transform analysis of LTI systems (3-4 lectures)
 - system functions for systems described by LCCDEs
 - magnitude and phase distortion; group delay
 - all-pass and minimum-phase systems

V. System structures (2 lectures)
 - signal flow graph representations
 - structures for FIR and IIR LTI systems

VI. Filter Design Techniques (4 lectures)
 - DT IIR filter designs from continuous-time filters
 - FIR filter design; windowing; optimum approximations

VII. The discrete Fourier transform (4 lectures)
 - discrete Fourier series representations and properties
 - discrete Fourier transform (DFT) and properties
 - convolution using the DFT

VIII. The fast Fourier transform (3–4 lectures)
 - efficient computation of the DFT
 - decimation-in-time and decimation-in-frequency FFT algorithms
<table>
<thead>
<tr>
<th>Homework</th>
<th>Due</th>
<th>Day</th>
<th>Date</th>
<th>#</th>
<th>Lecture Material</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>9/4</td>
<td>1</td>
<td></td>
<td>Review of DT signals and systems; notation</td>
<td>Ch. 1, Secs. 2.0–2.2</td>
</tr>
<tr>
<td>M</td>
<td>9/9</td>
<td></td>
<td></td>
<td>2</td>
<td>LTI sys. and properties; Fourier representations</td>
<td>Secs. 2.3–2.9</td>
</tr>
<tr>
<td>W</td>
<td>9/11</td>
<td></td>
<td></td>
<td>3</td>
<td>The z-transform; ROC</td>
<td>Secs. 3.0–3.1</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>9/16</td>
<td>4</td>
<td></td>
<td>Properties of the ROC; the inverse z-transform</td>
<td>Secs. 3.2–3.3</td>
</tr>
<tr>
<td>W</td>
<td>9/18</td>
<td></td>
<td></td>
<td>5</td>
<td>z-transform properties</td>
<td>Secs. 3.4–3.5</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>9/23</td>
<td>6</td>
<td></td>
<td>Sampling; Nyquist theorem; aliasing</td>
<td>Secs. 4.0–4.2</td>
</tr>
<tr>
<td>W</td>
<td>9/25</td>
<td></td>
<td></td>
<td>7</td>
<td>DT processing of CT signals</td>
<td>Secs. 4.3–4.4</td>
</tr>
<tr>
<td>M</td>
<td>9/30</td>
<td></td>
<td></td>
<td>8</td>
<td>CT proc. of DT signals; rate change via DT proc.</td>
<td>Secs. 4.5–4.6</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>10/2</td>
<td>9</td>
<td></td>
<td>Multirate signal processing</td>
<td>Sec. 4.7</td>
</tr>
<tr>
<td>M</td>
<td>10/7</td>
<td></td>
<td></td>
<td>10</td>
<td>A/D and D/A converters</td>
<td>Sec. 4.8</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>10/9</td>
<td>11</td>
<td></td>
<td>Transform analysis of LTI systems</td>
<td>Secs. 5.1–5.2</td>
</tr>
<tr>
<td>M</td>
<td>10/14</td>
<td></td>
<td></td>
<td>12</td>
<td>Rational system functions</td>
<td>Secs. 5.2–5.4</td>
</tr>
<tr>
<td>W</td>
<td>10/16</td>
<td>E</td>
<td>Exam 1 (through Lecture 10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>W</td>
<td>10/21</td>
<td>13</td>
<td></td>
<td>All-pass and minimum-phase systems</td>
<td>Secs. 5.5–5.6</td>
</tr>
<tr>
<td>5</td>
<td>W</td>
<td>10/23</td>
<td>14</td>
<td></td>
<td>Block diagram/signal flow graph representations</td>
<td>Secs. 6.0–6.3</td>
</tr>
<tr>
<td>M</td>
<td>10/28</td>
<td></td>
<td></td>
<td>15</td>
<td>Structures for IIR and FIR systems</td>
<td>Secs. 6.3–6.5</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>10/30</td>
<td>16</td>
<td></td>
<td>DT IIR filter design from CT filters</td>
<td>Secs. 7.0–7.1</td>
</tr>
<tr>
<td>M</td>
<td>11/4</td>
<td></td>
<td></td>
<td>17</td>
<td>DT FIR filter design by windowing</td>
<td>Secs. 7.2–7.3</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>11/6</td>
<td>18</td>
<td></td>
<td>Generalized linear phase sys.; optimum FIR filters</td>
<td>Secs. 5.7, 7.4</td>
</tr>
<tr>
<td>M</td>
<td>11/11</td>
<td></td>
<td></td>
<td>19</td>
<td>Alternation theorem; Parks-McClellan algorithm</td>
<td>Secs. 7.4–7.5</td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>11/13</td>
<td>20</td>
<td></td>
<td>Discrete Fourier series and its relation to DTFT</td>
<td>Secs. 8.0–8.3</td>
</tr>
<tr>
<td>M</td>
<td>11/18</td>
<td></td>
<td></td>
<td>21</td>
<td>The discrete Fourier transform</td>
<td>Secs. 8.4–8.5</td>
</tr>
<tr>
<td>W</td>
<td>11/20</td>
<td>E</td>
<td>Exam 2 (comprehensive through Lecture 19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>11/25</td>
<td></td>
<td></td>
<td>22</td>
<td>Properties of the DFT; circular convolution</td>
<td>Sec. 8.6</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>11/27</td>
<td>23</td>
<td></td>
<td>Linear convolution using the DFT</td>
<td>Sec. 8.7</td>
</tr>
<tr>
<td>M</td>
<td>12/2</td>
<td></td>
<td></td>
<td>24</td>
<td>Efficient computation of the DFT</td>
<td>Secs. 9.0–9.2</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>12/4</td>
<td>25</td>
<td></td>
<td>Decimation in-time and in-frequency FFT</td>
<td>Secs. 9.3–9.4</td>
</tr>
<tr>
<td>M</td>
<td>12/9</td>
<td></td>
<td></td>
<td>26</td>
<td>DFT computation via convolution</td>
<td>Secs. 9.6</td>
</tr>
<tr>
<td>11</td>
<td>W</td>
<td>12/11</td>
<td>27</td>
<td></td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>W</td>
<td>12/18</td>
<td>E</td>
<td>Final Exam (comprehensive; 1:30–3:30pm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References:

- Background material

- Advanced texts in signal processing

- Texts on advanced application-oriented topics