1.

With scalar $a > 0$, consider the signal $g_a : \mathbb{R} \rightarrow \mathbb{R}$ given by

$$g_a(t) := \cos (2\pi t) + \sin (2\pi at), \quad t \in \mathbb{R}.$$

1.a. For each $T > 0$ we have

$$\int_{-T}^{T} |g_a(t)|^2 dt = \int_{-T}^{T} |\cos (2\pi t) + \sin (2\pi at)|^2 dt = \int_{-T}^{T} (|\cos (2\pi t)|^2 + 2 \cos (2\pi t) \sin (2\pi at) + |\sin (2\pi at)|^2) dt. \quad (1.1)$$

With the help of standard trigonometric identities, elementary calculations yield

$$\int_{-T}^{T} |\cos (2\pi t)|^2 dt = \frac{1}{2} \int_{-T}^{T} (1 + \cos (4\pi t)) dt = T + \frac{\sin (4\pi T)}{4\pi} \quad (1.2)$$

and

$$\int_{-T}^{T} |\sin (2\pi at)|^2 dt = \frac{1}{2} \int_{-T}^{T} (1 - \cos (4\pi at)) dt = T - \frac{\sin (4\pi aT)}{4\pi a}, \quad (1.3)$$

while

$$\int_{-T}^{T} \cos (2\pi t) \sin (2\pi at) dt = 0.$$
since the integrand has odd symmetry with respect to the origin. As a result we conclude that

\[P_{g_a} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |g_a(t)|^2 dt = 1. \]

1.b. It is assumed that the signal \(g_a : \mathbb{R} \to \mathbb{R} \) gives rise to a Fourier series expansion of the form

\[\sum_{n=-\infty}^{\infty} c_n e^{j2\pi n a t}, \quad t \in \mathbb{R} \quad (1.4) \]

with Fourier coefficients \(\{c_n, n = 0, \pm 1, \ldots\} \). The signal \(g_a \) being defined on \(\mathbb{R} \), the existence of its Fourier series \((??) \) implies that \(g_a \) must be periodic with period

\[T := \frac{1}{a}. \]

But the signal \(t \to \sin (2\pi at) \) being itself periodic with period \(T \), it follows that the signal \(t \to \cos (2\pi t) \) must also be periodic with period \(T \). However, the signal \(t \to \cos (2\pi t) \) is itself periodic with period 1. These two requirements imply that \(T = \ell \) for some integer \(\ell = 1, 2, \ldots \), or equivalently

\[a = \frac{1}{\ell}. \]

1.c. Under the condition \(a = \frac{1}{\ell} \) for some \(\ell = 1, \ldots \), we get the following: If \(\ell \neq 1 \), then

\[g_a(t) = \frac{e^{2\pi it} + e^{-2\pi it}}{2} + \frac{e^{2\pi iat} - e^{-2\pi iat}}{2j} \]

\[= \frac{e^{2\pi it} + e^{-2\pi it}}{2} + \frac{e^{2\pi iat} - e^{-2\pi iat}}{2j}, \quad t \in \mathbb{R} \]

so that

\[c_1 = \frac{1}{2j}, \quad c_{-1} = -\frac{1}{2j} \quad \text{and} \quad c_\ell = c_{-\ell} = \frac{1}{2} \]

with all other Fourier coefficients being zero. If \(\ell = 1 \), then \(a = 1 \) and we get

\[c_{\pm 1} = \frac{1}{2} \left(1 \pm \frac{1}{j} \right) \]

with all other Fourier coefficients being zero. In either case we now conclude that

\[P_{g_a} = \frac{1}{T} \int_{0}^{\frac{T}{2}} |g_a(t)|^2 dt \quad \text{[By periodicity]} \]

\[= \sum_{n=-\infty}^{\infty} |c_n|^2 \quad \text{[By Parseval's Theorem for Fourier series]} \]

\[= \begin{cases} \frac{1}{4} \left| 1 - \frac{1}{j} \right|^2 + \frac{1}{4} \left| 1 + \frac{1}{j} \right|^2 & \text{if } \ell = 1 \\ 2 \left| \frac{1}{2j} \right|^2 + 2 \left| \frac{1}{2} \right|^2 & \text{if } \ell \neq 1 \end{cases} \]

\[= 1, \quad (1.5) \]

in agreement with the evaluation carried out in Part 1.a.
2. For each $a > 0$, consider the signal $h_a : \mathbb{R} \to \mathbb{R}$ given by

$$h_a(t) = e^{-a|t|}, \quad t \in \mathbb{R}.$$

2.a. By now you should know that

$$H_a(f) = \frac{2a}{a^2 + (2\pi f)^2}, \quad f \in \mathbb{R}$$

and I look forward to seeing your calculations.

2.b. Note that $\lim_{a \downarrow 0} h_a(t) = 1$ for each t in \mathbb{R} and it is easily verified that

$$\lim_{a \downarrow 0} H_a(f) = \begin{cases} 0 & \text{if } f \neq 0 \\ \infty & \text{if } f = 0 \end{cases}$$

so that $\lim_{a \downarrow 0} H_a(f)$ can be viewed as a proxy for $\delta(f)$. Thus, we can construct a direct approximation argument on the way to establish the Fourier pairing $1 \iff \delta(f)$, namely

$$h_a(t) \downarrow (a \downarrow 0) \iff H_a(f) \downarrow (a \downarrow 0) \iff \delta(f)$$
3. Consider the function \(v : [-\frac{1}{2}, \frac{1}{2}] \rightarrow \mathbb{R} \) given by
\[
v(t) = |t|, \quad |t| \leq \frac{1}{2}.
\]

3.a. Note that
\[
v_k = \int_{-\frac{1}{2}}^{\frac{1}{2}} |t| e^{-j2\pi k t} \, dt, \quad k = 0, \pm 1, \pm 2, \ldots
\]
so that
\[
v_{-k} = v_k, \quad k = 1, 2, \ldots
\]
with
\[
v_0 = \int_{-\frac{1}{2}}^{\frac{1}{2}} |t| \, dt = 2 \int_{0}^{\frac{1}{2}} t \, dt = \frac{1}{4}.
\]

Now for each \(k = 1, 2, \ldots \), we have
\[
v_k = \int_{-\frac{1}{2}}^{\frac{1}{2}} |t| e^{-j2\pi k t} \, dt = a_k + b_k
\]
where
\[
a_k := \int_{0}^{\frac{1}{2}} |t| e^{-j2\pi k t} \, dt = \int_{0}^{\frac{1}{2}} t e^{-j2\pi k t} \, dt
\]
and
\[
b_k := \int_{-\frac{1}{2}}^{0} |t| e^{-j2\pi k t} \, dt = -\int_{-\frac{1}{2}}^{0} t e^{-j2\pi k t} \, dt.
\]

It is clear that
\[
b_k = -\int_{-\frac{1}{2}}^{0} t e^{-j2\pi k t} \, dt
\]
\[
= -\int_{\frac{1}{2}}^{0} s e^{j2\pi k s} \, ds \quad \text{[Change of variable } t = -s]\]
\[
= \int_{0}^{\frac{1}{2}} s e^{j2\pi k s} \, ds = a_k^*.
\]
Integration by parts gives
\[
 a_k = \int_0^{1/2} te^{-j2\pi kt} \, dt \\
 = \int_0^{1/2} t \left(\frac{e^{-j2\pi kt}}{-j2\pi k} \right)' \, dt \\
 = \left[t \cdot \left(\frac{e^{-j2\pi kt}}{-j2\pi k} \right) \right]_0^{1/2} - \int_0^{1/2} \frac{e^{-j2\pi kt}}{-j2\pi k} \, dt \\
 = \frac{1}{2} \left(e^{-j\pi k} \right) - \frac{e^{-j2\pi kt}}{-j2\pi k} \left|_0^{1/2} \right. \\
 = \frac{1}{2} \left(e^{-j\pi k} \right) - \frac{e^{-j\pi k} - 1}{(-j2\pi k)^2} \\
 = \frac{1}{2} \left((-1)^k \right) - \frac{(-1)^k - 1}{(-j2\pi k)^2}.
\]

It is now immediate that
\[
b_k = a_k^* = \frac{1}{2} \left(\frac{(-1)^k}{j2\pi k} \right) - \frac{(-1)^k - 1}{(-j2\pi k)^2}
\]
so that
\[
v_k = a_k + b_k = -2 \frac{(-1)^k - 1}{(-j2\pi k)^2} = \frac{(-1)^k - 1}{2(\pi k)^2}.
\]
Finally, for each \(k = 1, 2, \ldots \), we have
\[
v_k = \begin{cases}
 0 & \text{if } k \text{ even} \\
 -\frac{1}{(\pi k)^2} & \text{if } k \text{ odd}.
\end{cases}
\]
Hence,
\[
v(t) = \sum_{k=-\infty}^{\infty} v_k e^{j2\pi kt} \\
 = v_0 + \sum_{k=1}^{\infty} v_k \left(e^{j2\pi kt} + e^{-j2\pi kt} \right) \\
 = \frac{1}{4} + 2 \sum_{k=1}^{\infty} v_k \cos (2\pi kt) \\
 = \frac{1}{4} + 2 \sum_{\ell=0}^{\infty} v_{2\ell+1} \cos (2\pi (2\ell + 1)t) \\
 = \frac{1}{4} - 2 \sum_{\ell=0}^{\infty} \frac{1}{\pi(2\ell + 1)^2} \cos (2\pi (2\ell + 1)t) \\
 = \frac{1}{4} - \frac{2}{\pi^2} \sum_{\ell=0}^{\infty} \frac{1}{(2\ell + 1)^2} \cos (2\pi (2\ell + 1)t), \quad t \in \mathbb{R}.
\] (1.6)
3.b. By Parseval’s Theorem for Fourier series we know that
\[
\int_{-\frac{1}{2}}^{\frac{1}{2}} |t|^2 dt = \sum_{k=-\infty}^{\infty} |v_k|^2.
\]
Noting that
\[
\int_{-\frac{1}{2}}^{\frac{1}{2}} |t|^2 dt = \frac{1}{3} \int_{-\frac{1}{2}}^{\frac{1}{2}} 3t^2 dt = \frac{1}{3} \left(2 \left(\frac{1}{2} \right)^3 \right) = \frac{1}{12},
\]
we conclude that \(I(v) = \frac{1}{2} \).

3.c. The calculations are straightforward: Note that
\[
\sum_{k=-\infty}^{\infty} |v_k|^2 = |v_0|^2 + \sum_{k=-\infty}^{\infty} |v_k|^2
\]
\[
= \frac{1}{16} + 2 \sum_{k=1}^{\infty} |v_k|^2
\]
\[
= \frac{1}{16} + 2 \sum_{\ell=0}^{\infty} |v_{2\ell+1}|^2
\]
\[
= \frac{1}{16} + 2 \sum_{\ell=0}^{\infty} \frac{1}{\pi (2\ell + 1)^4} = \frac{1}{16} + \frac{2}{\pi^4} \sum_{\ell=0}^{\infty} \frac{1}{(2\ell + 1)^4} \tag{1.7}
\]
and Part 3.b yields
\[
\frac{1}{12} = \frac{1}{16} + \frac{2}{\pi^4} \sum_{\ell=0}^{\infty} \frac{1}{(2\ell + 1)^4}.
\]
Solving for \(\pi^4 \) we get
\[
\pi^4 = 96 \cdot \sum_{\ell=0}^{\infty} \frac{1}{(2\ell + 1)^4}.
\]
4. It is high time to compute various integrals using the properties of the Fourier transform: With the function \(h : \mathbb{R} \to \mathbb{R} \) being defined by

\[
h(t) = \begin{cases}
1 & \text{if } |t| \leq 1 \\
0 & \text{if } |t| > 1,
\end{cases}
\]

we have

\[h(t) \iff H(f) \]

with

\[H(f) = 2 \cdot \frac{\sin(2\pi f)}{2\pi f}, \quad f \in \mathbb{R}, \]

and by duality we conclude that

\[H(-t) \iff h(f). \]

4.a. With this in mind, note that

\[
2I = \int_{\mathbb{R}} \left(\frac{\sin t}{t} \right)^2 \, dt \\
= 2\pi \int_{\mathbb{R}} \left(\frac{\sin(2\pi s)}{2\pi s} \right)^2 \, ds \quad \text{[Change of variable } t = 2\pi s] \\
= \frac{\pi}{2} \int_{\mathbb{R}} \left(2 \cdot \frac{\sin(2\pi f)}{2\pi f} \right)^2 \, df \quad \text{[Change of variable } s = f] \\
= \frac{\pi}{2} \int_{\mathbb{R}} |H(f)|^2 \, df \\
= \frac{\pi}{2} \int_{\mathbb{R}} |h(t)|^2 \, dt \quad \text{[Parseval’s Theorem for Fourier transforms]} \\
= \frac{\pi}{2} \int_{-1}^{1} \, dt \\
= \pi, \quad \text{hence } I = \frac{\pi}{2}. \tag{1.8}
\]
4.b. Note that

\[
I(a) = \int_{\mathbb{R}} e^{-a|t|} \frac{\sin t}{t} dt
\]

\[
= 2\pi \int_{\mathbb{R}} e^{-2\pi a|s|} \frac{\sin (2\pi s)}{2\pi s} ds \quad \text{[Change of variable } t = 2\pi s]\]

\[
= \pi \int_{\mathbb{R}} e^{-b|s|} \left(\frac{2 \sin (2\pi s)}{2\pi s} \right) ds \quad \text{[Set } b = 2\pi a]\]

\[
= \pi \int_{\mathbb{R}} e^{-b|s|} \cdot H(-s) ds
\]

\[
= \pi \int_{\mathbb{R}} \frac{2b}{b^2 + (2\pi f)^2} \cdot h(f) df \quad \text{[By Parseval’s Theorem for Fourier transforms]}\]

\[
= \pi \int_{-1}^{1} \frac{2b}{b^2 + (2\pi f)^2} df
\]

\[
= \frac{2\pi}{b} \int_{-1}^{1} \frac{1}{1 + \left(\frac{2\pi}{b} f \right)^2} df
\]

\[
= \frac{2\pi a}{b} \int_{-a^{-1}}^{a^{-1}} \frac{1}{1 + x^2} dx \quad \text{[Change of variable } x = \frac{2\pi}{b} f = \frac{f}{a}]\]

\[
= 2\text{Arctan} \left(a^{-1} \right). \tag{1.9}
\]

4.c. Note that

\[
J(a) = \int_{0}^{\infty} e^{-at} \frac{\sin t}{t} dt
\]

\[
= \int_{0}^{\infty} e^{-a|t|} \frac{\sin t}{t} dt
\]

\[
= \frac{1}{2} I(a) \tag{1.10}
\]

since

\[
\int_{-\infty}^{0} e^{-a|t|} \frac{\sin t}{t} dt = \int_{0}^{\infty} e^{-a|t|} \frac{\sin t}{t} dt
\]

by symmetry, and the conclusion

\[
J(a) = \text{Arctan} \left(a^{-1} \right)
\]

follows.

As stated in the hint to this question, there are many different ways to compute these integrals. In particular you should also be aware of the fact that if \(g_1, g_2 : \mathbb{R} \to \mathbb{C} \) are finite energy signals with Fourier transforms \(G_1, G_2 : \mathbb{R} \to \mathbb{C} \), then

\[
\int_{\mathbb{R}} g_1(t)g_2(t) dt = \langle g_1 \ast g_2 \rangle (0) \tag{1.11}
\]
The signal $g_1 \ast g_2$ has a Fourier transform given by $G_1 \cdot G_2$, and the inverse Fourier transform yields

$$ (g_1 \ast g_2)(t) = \int_{\mathbb{R}} G_1(f) \cdot G_2(f) e^{j2\pi ft} df $$

so that

$$ \int_{\mathbb{R}} g_1(t)g_2(t)dt = (g_1 \ast g_2)(0) = \int_{\mathbb{R}} G_1(f) \cdot G_2(f) df. $$