We know

\[1 \equiv \int_{-\infty}^{\infty} 1 \cdot e^{-j2\pi ft} dt = \lim_{T \to \infty} \int_{-T}^{T} 1 \cdot e^{-j2\pi ft} dt = \lim_{T \to \infty} G_T(f), \]

where

\[G_T(f) = \int_{-T}^{T} 1 \cdot e^{-j2\pi ft} dt \]

\[= \frac{1}{-j2\pi f} (e^{-j2\pi fT} - e^{j2\pi fT}) \]

\[= \frac{1}{-j2\pi f} (-2j) \sin(2\pi fT) \]

\[= \frac{\sin(2\pi fT)}{\pi f} = \frac{\sin(2\pi fT)}{2\pi fT} 2T. \]

Fig.1 is a plot of \(G_T(f) \) versus \(f \) under different values of \(T \). We can see as \(T \) gets larger, the peak of \(G_T(f) \) becomes higher. Meanwhile, the mainlobe of \(G_T(f) \) which is centered at \(f = 0 \) becomes more squeezed, and the difference between mainlobe peak and other sidelobe peaks becomes larger also. Hence it is not hard to imagine that as \(T \) goes to \(\infty \), \(G_T(f) \) goes to \(\delta(f) \).