1. Logic to Circuit to Layout

Convert the following logical expressions to schematic diagrams for static CMOS logic. Then convert each to a rough layout assuming an n-well process (e.g. p-type wafer: nFETs can be built directly on the wafer); you need only show wells for pFETs. The following is an example:

\[
\text{out} = \neg (a \cdot b)
\]

A. \[
\text{out} = \neg ((a \cdot b) \mid c)
\]

B. \[
\text{out} = \neg (a \mid b) \cdot c
\]

C. \[
\text{out} = \neg (a \cdot b \cdot (c \mid d))
\]

D. \[
\text{out} = (a + b); \text{cout} = (a + b = 10_2) \text{ (carry-out only; no carry-in)}
\]

[do the full circuit diagram, but do not spend more than 20 minutes trying to do the layout for this; it is not simple AOI logic … make enough of an attempt to understand the difficulty of dealing with inverted values]
2. Layout to Circuit to Logic

A. What logic equations do the following schematics implement?

B. Consider the following stick diagram. Draw the transistor-level schematic. What logic equation does the circuit implement?
C. Provide a side-view diagram for each of the cuts X and Y through the layout below. Be sure to label each of the strata.

D. What is the logic equation represented by the layout in question C?