Credit where credit is due:
Slides contain original artwork (© Jacob 2004) as well as material taken liberally from Irwin & Vijay’s CSE477 slides (PSU), Schmit & Strojwas’s 18-322 slides (CMU), Dally’s EE273 slides (Stanford), Wolf’s slides for Modern VLSI Design, and/or Rabaey’s slides (UCB).
Overview

- Wires and their physical properties (MOSFETs, too ...)
- LC/RC/RLC transmission lines, characteristic impedance, reflections
- Dynamic considerations (e.g. skin effect)
- The Bottom Line: propagation delay, transistor sizing, inductive (Ldi/dt) noise, capacitive coupling, signal degradation, various rules of thumb for design
Metal Layers in ICs

IBM’s 6-layer copper interconnect
Some Transmission Lines

- **Coaxial Cable**
 - Insulating jacket
 - Outer shield
 - Inner dielectric
 - Inner conductor

- **Twisted Pair**
 - Dielectric
 - Conductor

- **Microstrip**
 - Conductor
 - Dielectric
 - Gnd

- **Stripline**
 - Conductor
 - Dielectric
 - Gnd
Cross Section of PCB Board

- FR4 Dielectric
- M1 (signal layer)
- M2 (Ground plane)
- M3 (Power plane)
- M4 (signal layer)
- M5 (Power plane)
- M6 (signal layer)
Wires in Digital Systems

Physically, wires are

- Stripguides on (and in) printed circuit-board cards, layed over & sandwiched between groundplanes
- Stripguides on ICs, layered atop each other
- Conductors in cables & cable assemblies
- Connectors

We tend to treat them as IDEAL wires

- No delay (equipotential)
- No capacitance, inductance, or resistance

They are NOT ideal …

To build reliable systems, must understand properties & behavior
Metal Layers in ICs

Remember the RC Constant τ?
Metal Layers & Capacitances

- On-chip wires run in multiple layers with no explicit return planes (ground is used as implicit return)
- Thus, almost all capacitance of on-chip wire is to other wires (same plane, different plane, etc.)
- Capacitance of MOSFET scales with Vdd
Metal Layers & Resistances

- Resistance of conductor proportional to length/width, depends on material (resistivity), causes delay & loss
- Resistance of wire scales with square root of signaling frequency (at high speeds) ("skin effect")
- Process scaling tends to increase resistance
Wire Resistance

- \[R = \frac{\rho l}{A} = \frac{\rho l}{(wh)} \] for rectangular wires (on-chip wires & vias, PCB traces)
- \[R = \frac{\rho l}{A} = \frac{\rho l}{(\pi r^2)} \] for circular wires (off-chip, off-PCB)

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity (\rho) ((\Omega)-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver (Ag)</td>
<td>1.6 x 10^{-8}</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>1.7 x 10^{-8}</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>2.2 x 10^{-8}</td>
</tr>
<tr>
<td>Aluminum (Al)</td>
<td>2.7 x 10^{-8}</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>5.5 x 10^{-8}</td>
</tr>
</tbody>
</table>
Sheet Resistance

\[R = \frac{\rho l}{wh} = \frac{l}{w} \cdot \frac{\rho}{h} \] for rectangular wires

Sheet resistance \(R_{\text{sq}} = \frac{\rho}{h} \)

<table>
<thead>
<tr>
<th>Material</th>
<th>Sheet resistance (R_{\text{sq}}) (Ω/sq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n, p well diffusion</td>
<td>1000 to 1500</td>
</tr>
<tr>
<td>n+, p+ diffusion</td>
<td>50 to 150</td>
</tr>
<tr>
<td>polysilicon</td>
<td>150 to 200</td>
</tr>
<tr>
<td>polysilicon with silicide</td>
<td>4 to 5</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.05 to 0.1</td>
</tr>
</tbody>
</table>
Wire Capacitance

Common wire cross-sections/permittivities:

- Permittivity $\varepsilon = \varepsilon_0 \varepsilon_r$
- Permittivity of free space $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m

<table>
<thead>
<tr>
<th>Material</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1</td>
</tr>
<tr>
<td>Teflon</td>
<td>2</td>
</tr>
<tr>
<td>Polymide</td>
<td>3</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>3.9</td>
</tr>
<tr>
<td>Glass-epoxy (PCB)</td>
<td>4</td>
</tr>
<tr>
<td>Alumina</td>
<td>10</td>
</tr>
<tr>
<td>Silicon</td>
<td>11.7</td>
</tr>
</tbody>
</table>
Inductance

When conductors of transmission line are surrounded by uniform dielectric, capacitance & inductance are related:

\[CL = \varepsilon \mu \]

Inductive effects can be ignored

- if the resistance of the wire is substantial enough (as is the case for long Al wires with small cross section)
- if rise & fall times of applied signals are slow enough

So … inductance must be considered

- for off-chip signals (even power/ground)
- for future even-higher-speed on-chip signalling
MOSFET Resistance

Top view:

- MOS structure resistance - R_{on}
- Source and drain resistance
- Contact (via) resistance
- Wiring resistance
MOSFET Capacitance

Capacitances formed by p/n junctions

Depletion-region capacitances decrease with voltage across region; resistances increase with voltage across region
Wires & Models

Example Wires:

<table>
<thead>
<tr>
<th>Type</th>
<th>W</th>
<th>R</th>
<th>C</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-chip</td>
<td>0.6 μm</td>
<td>150k Ω/m</td>
<td>200 pf/m</td>
<td>600 nH/m</td>
</tr>
<tr>
<td>PC Board</td>
<td>150 μm</td>
<td>5 Ω/m</td>
<td>100 pf/m</td>
<td>300 nH/m</td>
</tr>
<tr>
<td>24AWG pair</td>
<td>511 μm</td>
<td>0.08 Ω/m</td>
<td>40 pf/m</td>
<td>400 nH/m</td>
</tr>
</tbody>
</table>

In a situation, use a *model* of wires that captures the properties we need:

- ideal, lumped L, R, or C
- LC, RC, RLC transmission line
- General LRCG transmission line

Appropriate choice of model depends on signaling frequency \(f_0 = \frac{R}{2\pi L} \)
General LRCG Model

Model an *infinitesimal* length of wire, dx, with lumped components L, R, C, and G (inductance, resistance, capacitance, and conductance)

- **Drop across R and L**
 \[
 \frac{\partial V}{\partial x} = RI + L\frac{\partial I}{\partial t}
 \]

- **Current into C and G**
 \[
 \frac{\partial I}{\partial x} = GV + C\frac{\partial V}{\partial t}
 \]

- **Second-order differential equation**
 \[
 \frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG)\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}
 \]

 For $G=0$:
 \[
 \frac{\partial^2 V}{\partial x^2} = RC\frac{\partial V}{\partial t} + LC\frac{\partial^2 V}{\partial t^2}
 \]
Impedance

An infinite length of LRCG transmission line has impedance Z_0

Driving a line terminated into Z_0 is same as driving Z_0

In general, Z_0 is complex and frequency-dependent

For LC lines (operating at “high” frequencies), Z_0 is real-valued and independent of frequency

$typical$ $assumption: G = 0$
Cut-off Frequency f_0

$Z_0 = \left(\frac{R + j\omega L}{G + j\omega C} \right)^{1/2}$

- "Low" Freq: $R \gg j\omega L$

- Find f_0 where $R = j\omega L$

- $f_0 = \frac{R}{2\pi L}$

- "High" Freq: $R \ll j\omega L$

$Z_0 = \sqrt{\frac{R}{j\omega C}}$

$Z_0 = \sqrt{\frac{L}{C}}$

- Transmission lines have characteristic frequency f_0
- Below $f_0 \approx$ RC model, Above $f_0 \approx$ LC model
Cut-off Frequency f_0

Example, 24AWG Pair

- $f_0 = 33\text{kHz}$
- Below f_0, line is RC
- Above f_0, line is LC

\[Z_0 = \left(\frac{0.08 + 400 \times 10^{-9} \times 2\pi f j}{40 \times 10^{-9} \times 2\pi f j} \right)^{\frac{1}{2}} \]
Cut-off Frequency f_0 II

L = 0.6 nH/mm
C = 73 nF/mm
$R_{dc} = 120\, \Omega /\text{mm}$
$f_0 = 32\, \text{GHz}$

L = 0.5 nH/mm
C = 104 fF/mm
$R_{dc} = 0.008\, \Omega /\text{mm}$
$f_0 = 2.5\, \text{MHz}$

~RC Model for on chip interconnects

~LC Model for PC Board traces

$Z_0 = \left(\frac{L}{C}\right)^{\frac{1}{2}} = \left(\frac{0.5\, \text{nH}}{0.1\, \text{pF}}\right)^{\frac{1}{2}} \approx 70\, \Omega$

1 mil = 0.001 inch

Example from Poulton 1999 ISSCC Tutorial
RC Lines (low frequency)

\[\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG) \frac{\partial V}{\partial t} + LC \frac{\partial^2 V}{\partial t^2} \]

R >> jωL, governed by diffusion equation:

\[\frac{\partial^2 V}{\partial x^2} = RC \frac{\partial V}{\partial t} \]

Signal diffuses down line, disperses:

R increases w/ length d
C increases with d
Delay & rise time both increase with RC, thus with d²

For a typical wire:
R = 150KΩ/m
C = 200pF/m
τ = RC = 30 μs/m²
= 30 ps/mm²
LC Lines (high frequency)

\[\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG) \frac{\partial V}{\partial t} + LC \frac{\partial^2 V}{\partial t^2} \]

\(R \ll j\omega L \), governed by wave equation:

\[\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2} \quad V_i(x, t) = \left(\frac{Z_0}{Z_0 + R_S} \right) V_S \left(t - \frac{x}{v} \right) \]

Waveform on line is superposition of forward- and reverse-traveling waves:

- Waves travel with velocity \(v = (LC)^{-1/2} \)
- What happens when the wave gets to the end of line?
RLC/G Lines (general case)

\[\frac{\partial^2 V}{\partial x^2} = RGV + (RC + LG) \frac{\partial V}{\partial t} + LC \frac{\partial^2 V}{\partial t^2} \]

Ignoring G, wave propagation equation:

\[\frac{\partial^2 V}{\partial x^2} = RC \frac{\partial V}{\partial t} + LC \frac{\partial^2 V}{\partial t^2} \]

Lossy transmission line, dispersive waves:

Substrate-doping-dependent dispersion of a picosecond-scale pulse in propagation of an on-chip transmission line
RC vs. RLC

Output response of inverter with step input:

In reality, we have a non-zero inductance in series with the RC circuit. (Inductors and capacitors both “have memory”)

![Diagram of inverter with inductors and capacitors](image-url)
RC vs. RLC

Output response of inverter with step input:

- **RC Model**
- **RLC Model**

Result: slower response time, ringing
Impedance and Reflections

Terminating a Transmission Line:

\[V_i \rightarrow Z_0 \rightarrow I_f \rightarrow \rightarrow I_r \rightarrow Z_T \rightarrow I_T \]

Telegrapher’s Equations:

\[k_r = \frac{I_r}{I_i} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0} \]

Reflection coefficient \(k_r \) may be complex for complex impedances \(Z_T \) — i.e., the reflected wave may be phase-shifted from the incident wave.

For real-valued \(Z_T \) the reflection coefficient is real, and the phase shift is either 0 (\(k_r \) positive) or \(\pi \) (\(k_r \) negative).
Impedance and Reflections

\[k_r = \frac{I_r}{I_i} = \frac{V_r}{V_i} = \frac{Z_T - Z_0}{Z_T + Z_0} \]

Matched Termination, \(k_r = 0 \)

Open-Circuit Termination, \(k_r = 1 \)

Short-Circuit Termination, \(k_r = -1 \)
Impedance and Reflections

\[1V \quad 400\Omega \quad S \quad 50\Omega, 5\text{ns} \quad R \quad 1K\Omega \]
Impedance and Reflections

Values are typical for 8-mA CMOS driver with 1kΩ pullup
Impedance and Reflections

<table>
<thead>
<tr>
<th>Vwave</th>
<th>Vline</th>
<th>time t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi1</td>
<td>0.111</td>
<td>0.111</td>
</tr>
<tr>
<td>Vr1</td>
<td>0.101</td>
<td>0.212</td>
</tr>
<tr>
<td>Vi2</td>
<td>0.078</td>
<td>0.290</td>
</tr>
<tr>
<td>Vr2</td>
<td>0.071</td>
<td>0.361</td>
</tr>
<tr>
<td>Vi3</td>
<td>0.055</td>
<td>0.416</td>
</tr>
<tr>
<td>Vr3</td>
<td>0.050</td>
<td>0.465</td>
</tr>
<tr>
<td>Vi4</td>
<td>0.039</td>
<td>0.504</td>
</tr>
<tr>
<td>Vr4</td>
<td>0.035</td>
<td>0.539</td>
</tr>
<tr>
<td>Vi5</td>
<td>0.027</td>
<td>0.566</td>
</tr>
</tbody>
</table>
Impedance and Reflections

\[\begin{align*}
V_{\text{line}}(t) & = V_S(t) + V_R(t) \\
& = V_S(t) + \frac{50 \Omega}{1000 \Omega} \cdot 50 \Omega \cdot 5 \text{ns} \\
& = V_S(t) + \frac{1}{20} \cdot 50 \Omega \cdot 5 \text{ns}
\end{align*} \]
Reflections, $Z_S < Z_0$

$$V_S = V_I \frac{Z_S}{Z_S + Z_0} = 2 \times \frac{50}{25 + 50} = 1.3333 \text{ V}$$

$$k_r \text{ (load)} = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{\text{inf} - 50}{\text{inf} + 50} = 1$$

$$k_r \text{ (source)} = \frac{Z_S - Z_0}{Z_S + Z_0} = \frac{25 - 50}{25 + 50} = -0.3333$$

$Z_S = 25 \Omega$

$Z_0 = 50 \Omega$

$Z_L = \text{inf} \Omega$

$V_I = 0v \rightarrow 2v$
Reflections, $Z_S < Z_0$

$$k_r \text{ (load)} = 1$$
$$k_r \text{ (source)} = -0.3333$$

V_S Z_0 V_L

V_I Z_S

$T_D = 250 \text{ ps}$

Time (ps)

0 250 500 750 1000

V_S

0 1.33 V 2.22 V 1.92 V

V_L

0 1.33 V 1.77 V 1.92 V 2.22 V 2.66 V
Reflections, $Z_S < Z_0$

Volts

- V_{load}
- V_{source}

Time (ps)

0 250 500 750 1000 1250 1500 1750

0.5v 1.0v 1.5v 2.0v 2.5v

0 250 500 750 1000 1250 1500 1750

UNIVERSITY OF MARYLAND
Add In Capacitance …

What if we throw in a capacitor (i.e., reality?)
Simple case: matched impedance at source end

[Diagram showing a circuit with a 1V source, a 50Ω resistor, and a 50Ω, 5ns transmission line, with receiving and source ends labeled.]
Impedance and Reflections

Modern systems have MANY, MANY, MANY potential sources of impedance-mismatch and/or reflections
Skin Effect

- At low frequencies, most of conductor’s cross-section carries current.
- As frequency increases, current moves to skin of conductor, back-EMF induces counter-current in body of conductor. Result: increased resistance, longer transmission delays.
- Skin effect most important at gigahertz frequencies.
Propagation Delay

Waves travel with velocity through medium:

\[v = (LC)^{-1/2} = (\varepsilon_{di} \mu_{di})^{-1/2} = c_0(\varepsilon_r \mu_r)^{-1/2} \]

- \(\varepsilon \) is the permittivity of dielectric
- \(\mu \) is the permeability of dielectric

Relative permittivity \(\varepsilon_r \) and propagation speed (\(\mu_r \) is typically 1 for most dielectrics):

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>(\varepsilon_r)</th>
<th>Speed (cm/ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>SiO\textsubscript{2}</td>
<td>3.9</td>
<td>15</td>
</tr>
<tr>
<td>PC Board (epoxy glass)</td>
<td>5.0</td>
<td>13</td>
</tr>
<tr>
<td>Alumina (ceramic package)</td>
<td>9.5</td>
<td>10</td>
</tr>
</tbody>
</table>
Propagation Delay

But it’s not that simple ...

\[\frac{R_{C_{polysilicon}}}{R_{C_{metal}}} \approx 20 \]

Metal Interconnect

Polysilicon Interconnect

\(V_{out} \)

TIME
Propagation Delay

Once again, $\tau = RC$

\[C_{\text{wire}} = C_{\text{pp}} + C_{\text{fringe}} + C_{\text{interwire}} \]
\[= \left(\frac{\varepsilon_{\text{di}}}{t_{\text{di}}} \right) WL \]
\[+ \left(\frac{2\pi\varepsilon_{\text{di}}}{\log(t_{\text{di}}/H)} \right) \]
\[+ \left(\frac{\varepsilon_{\text{di}}}{t_{\text{di}}} \right) HL \]
Propagation Delay

(from [Bakoglu89])
Insights

• For W/H < 1.5, the fringe component dominates the parallel-plate component. Fringing capacitance can increase overall capacitance by a factor of 10 or more.
• When W < 1.75H interwire capacitance starts to dominate
• Interwire capacitance is more pronounced for wires in the higher interconnect layers (further from the substrate)
• Wire delay nearly proportional to L^2

Rules of thumb:

• Never run wires in diffusion
• Use poly only for short runs
• Shorter wires – lower R and C
• Thinner wires – lower C but higher R
Wire Spacing

Intel P856.5
Al, 0.25µm

- Ω - 0.05
- Ω - 0.12
- Ω - 0.33
- Ω - 0.33
- Ω - 1.11

Scale: 2,160 nm

Intel P858
Al, 0.18µm

- Ω - 0.07
- Ω - 0.08
- Ω - 0.17
- Ω - 0.49
- Ω - 0.49

IBM CMOS-8S
CU, 0.18µm

- Ω - 0.05
- Ω - 0.10
- Ω - 0.10
- Ω - 0.49
- Ω - 0.49

from MPR 2000
Overcoming Interconnect R

Selective technology scaling
(scale W while holding H constant)

Use better interconnect materials

- lower resistivity materials like copper

As processes shrink, wires get shorter (reducing C) but they get closer together (increasing C) and narrower (increasing R). So RC wire delay increases and capacitive coupling gets worse.

Copper has about 40% lower resistivity than aluminum, so copper wires can be thinner (reducing C) without increasing R

- use silicides (WSi2, TiSi2, PtSi2 and TaSi)

Conductivity is 8-10 times better than poly alone

Use more interconnect layers

reduces the average wire length L, but beware of extra contacts
Inductive Noise

L di/dt noise (ground bounce):

Current flow changes direction when input (thus output) values change

Magnitude of current change is di
The time to switch directions is dt
The voltage-drop induced on this wire at time of switching is L di/dt
Inductive Noise

$L \frac{di}{dt}$ noise (ground bounce):

\[\Delta V = L \frac{di}{dt} = \text{voltage-drop induced on this wire} \]

What comes out here?

Another inverter, elsewhere.

I/O Driver: