1. Read Appendix B of text by A. Tanenbaum, *Structured Computer Organization*, 5th ed., Prentice-Hall, 2006, and work the following problems from Appendix B:
 a. Problem B–1.
 b. Problem B–2.
 c. Problem B–3.

2. What sign-magnitude decimal values are represented by the following IEEE 754 single precision floating-point words whose contents are shown using hexadecimal shorthand? (Hint: use C-compiler and formatted output to save yourself from doing considerable work.)
 a. B9EBEDFA
 b. 7F800000
 c. 40490FDB
 d. FF83FD03

4. The designers of a particular computer have decided that the computer must be capable of representing single-precision (single-word) floating-point numbers in the range \((-10^{-17} \text{ to } 10^{17}\) with a precision of one part in \(10^5\). Determine the minimal binary word length which must be chosen for this machine, and indicate the floating-point format you would choose for doing this in order to facilitate the sorting of floating-point numbers. (Assume that \(2^{10} = 10^3\) to facilitate decimal to binary conversions.)

5. Recall from your reading of Silio’s notes on floating-point representations that the UNIVAC 1100 series computers have 36-bit words and perform 1’s complement arithmetic. Suppose UNIVAC 1100 registers A1 and A2 contain the following bit patterns in octal shorthand.
 \((A1) = 572053777777 \quad (A2) = 206556400000\)
 Viewing the contents of A1 and A2 as single-precision floating-point numbers:
 a. What sign-magnitude decimal number is contained in A1?
 b. What sign-magnitude decimal number is contained in A2?

6. In a DEC PDP-11 the contents of two consecutive memory words are (in binary):
 \(1011111111010000 \quad 0000000000000000\)
 Recall that the single-precision floating-point format for this machine is of the form: \(1+8+23(24)\) bits with a binary normalized mantissa 0.1xxx as in
 \[
 \begin{array}{c|c|c}
 \text{1} & \text{8} & \text{23} \\
 \hline
 S_M & \text{BIASED} & \text{BINARY NORMALIZED} \\
 \hline
 \text{EXponent} & \text{MANTISSA} \\
 \end{array}
 \]
 If this 32-bit pattern is interpreted as a single-precision floating-point number, what sign-magnitude decimal number does it represent?
 -continued-
7. The IBM 360/370 series computers use a sign-magnitude hexadecimal normalized, biased-exponent, 32-bit representation for single precision floating-point numbers in the following format:

```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>BIASED</td>
<td>HEXADECIMALLY NORMALIZED</td>
<td>MANTISSA</td>
</tr>
</tbody>
</table>
```

Write the 8-digit hexadecimal representation of the bit pattern in the 32-bits known to contain the single-precision representation of the following floating-point number shown here in both its decimal and octal forms:

\[-(2^{7}\frac{2}{13})_{10} = -(33.1166116611661166...)_8\]

8. Consider the following biased exponent (bias = 2^5), sign-magnitude floating point format for representing binary normalized numbers in single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized fraction, and there are no hidden bits:

```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>BIASED</td>
<td>BINARY NORMALIZED</td>
<td>MANTISSA</td>
</tr>
</tbody>
</table>
```

Suppose we are given the following two operands represented in this format:

\[X = 1000010 \text{ 1010001} \quad Y = 0000101 \text{ 1100110}\]

Show the bit pattern in the single-precision word \(S\) that results from the floating add of the contents in \(X\) and \(Y\), assuming that the result is truncated to a 7-bit precision fraction.

9. **Programming Project 4 (Due: Class 25, Mon., Apr. 26, 2009, same day as homework set 10; so don’t delay getting started!):** Consider the following biased exponent (bias = 2^6), sign-magnitude floating point format for representing binary normalized numbers in 16-bit single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized mixed number with hidden bit similar to IEEE754.

```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>BIASED</td>
<td>BINARY NORMALIZED</td>
<td>SIGNIFICAND</td>
</tr>
</tbody>
</table>
```

For example, the following two operands represented in this format:

\[A = 1000010 \text{ 10100011} \quad B = 0000101 \text{ 11001100}\]

where \(A = 0x82A3 = -1.10100011 \times 2^{-62}\) and \(B = 0x05CC = +1.11001100 \times 2^{-59}\).

a. Making use of the MAC-2 instruction repertoire and the inv(x) function you wrote and tested in programming assignment 3, write and test a procedure (i.e., a function subprogram) \(\text{or}(x,y)\) that computes the bit-wise logical OR of the n-tuples \(x\) and \(y\). The arguments are passed by reference, with address \(y\) pushed on the stack first followed by address \(x\) pushed on the stack followed by a call to function \(\text{or}\), which returns the value computed in the ac register (return by value).

b. Making use of the MAC-2 instruction repertoire, write a (void function) procedure \(\text{ashr2}(x)\) that performs a 1-bit position 2’s-complement arithmetic (algebraic) right shift of the contents of memory location \(x\) and leaves the result in memory location \(x\), where the address \(x\) is passed by reference on the stack.

c. Again, making use of the MAC-2 instruction repertoire and whatever other functions (such as the OR function and procedure \(\text{ashr2}(x)\) from parts a.) and b.) write and test a procedure (i.e., a function subprogram) \(\text{fadd}(x,y)\) that performs a floating add of single-precision floating point numbers in memory locations \(x\) and \(y\) and returns the single-precision floating-point format result in the ac register, where all single-precision floating point numbers are represented in the format specified above in Problem 9. Again, the arguments are passed by reference, with address \(y\) pushed on the stack first followed by address \(x\) pushed on the stack followed by a call to function \(\text{fadd}\), which returns the value computed in the ac register (return by value).

d. Test your \(\text{fadd}\) function using the following main program (\text{prg4main}):
Repair the following main program, if necessary, to accomplish the desired results as stated in the comments.

```
/prg4main
EXTRN inv
EXTRN or
EXTRN fadd

x1 0x7D5C
x2 0x7A33
x3 0x0b98
x4 0x02A3
ans1 RES 1
ans2 RES 1
ans3 RES 1
ans4 RES 1
ans5 RES 1
ans6 RES 1

start loco 4020
swap
loc0 x1
push
call inv
stod x1 /create data x1=0x82A3
stod ans1
loc0 ans1
push
call ashr2 /make sure ashr2 is working
insp 1
loc0 x2
push
call inv
stod x2 /create data x2=0x85CC
call or
stod ans2 /make sure OR is working
call fadd
stod ans3 /ans3=fadd(x1,x2)
loc0 x3
stol 0
call ashr2 /ashr2 shifts x3 right arithmetically
call fadd
stod ans4 /ans4=fadd(x1,x3)
loc0 x4
stol 1
call fadd
stod ans5 /ans5=fadd(x3,x4)
loc0 x2
stol 0
call fadd
stod ans6 /ans6=fadd(x2,x4)
insp 2
halt
END start
```