ENEE 350 Homework Set No. 9
(Due: Class 22, Mon., Apr. 16, 2007)

and

Programming Project 4
(Due: Class 25, Wed., Apr. 25, 2007)

1. Read Appendix B of text by A. Tanenbaum, *Structured Computer Organization*, 5th ed., Prentice-Hall, 2006, and work the following problems from Appendix B:
 a. Problem B–1.
 b. Problem B–2.
 c. Problem B–3.

2. What sign-magnitude decimal values are represented by the following IEEE 754 single precision floating-point words whose contents are shown using hexadecimal shorthand? (Hint: use C-compiler and formatted output to save yourself from doing considerable work.)
 a. B9EBEDFA
 b. 7F800000
 c. 40490FDB
 d. FF83FD03

4. The designers of a particular computer have decided that the computer must be capable of representing single-precision (single-word) floating-point numbers in the range \(\pm(10^{-17} \text{ to } 10^{17}) \) with a precision of one part in \(10^5 \). Determine the minimal binary word length which must be chosen for this machine, and indicate the floating-point format you would choose for doing this in order to facilitate the sorting of floating-point numbers. (Assume that \(2^{10} = 10^3 \) to facilitate decimal to binary conversions.)

5. Recall from your reading of Silio’s notes on floating-point representations that the UNIVAC 1100 series computers have 36-bit words and perform 1’s complement arithmetic. Suppose UNIVAC 1100 registers A1 and A2 contain the following bit patterns in octal shorthand.
 \[
 (A1) = 572053777777 \\
 (A2) = 206556400000
 \]

 Viewing the contents of A1 and A2 as single-precision floating-point numbers:
 a. What sign-magnitude decimal number is contained in A1?
 b. What sign-magnitude decimal number is contained in A2?

6. In a DEC PDP-11 the contents of two consecutive memory words are (in binary):
 \[
 1011111111010000 \quad 0000000000000000
 \]

 Recall that the single-precision floating-point format for this machine is of the form: 1+8+23(24) bits with a binary normalized mantissa 0.xxx as in
 \[
 \begin{array}{ccc}
 \text{1} & \text{8} & \text{23} \\
 \text{S_E} & \text{BIASED} & \text{BINARY NORMALIZED} \\
 \text{EXPONENT} & \text{MANTISSA}
 \end{array}
 \]

 If this 32-bit pattern is interpreted as a single-precision floating-point number, what sign-magnitude decimal number does it represent?

 -continued-
7. The IBM 360/370 series computers use a sign-magnitude hexadecimally normalized, biased-exponent, 32-bit representation for single precision floating-point numbers in the following format:

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm</td>
<td>Biased Exponent</td>
<td>Hexadecimally Normalized Mantissa</td>
</tr>
</tbody>
</table>

Write the 8-digit hexadecimal representation of the bit pattern in the 32-bits known to contain the single-precision representation of the following floating-point number shown here in both its decimal and octal forms:

\[-(27 \frac{2}{13})_{10} = -(33.1166116611661166...)_8\]

8. Consider the following biased exponent (bias = 2^5), sign-magnitude floating point format for representing binary normalized numbers in single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized fraction, and there are no hidden bits:

<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm</td>
<td>Biased Exponent</td>
<td>Binary Normalized Mantissa</td>
</tr>
</tbody>
</table>

Suppose we are given the following two operands represented in this format:

\[X = 1\ 000010\ 1010001\]
\[Y = 0\ 000101\ 1100110\]

Show the bit pattern in the single-precision word S that results from the floating add of the contents in X and Y, assuming that the result is truncated to a 7-bit precision fraction.

9. **Programming Project 4 (Due: Class 25, Wed., Apr. 25, 2007):** Consider the following biased exponent (bias = 2^6), sign-magnitude floating point format for representing binary normalized numbers in 16-bit single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized mixed number with hidden bit similar to IEEE754.

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm</td>
<td>Biased Exponent</td>
<td>Binary Normalized Significand</td>
</tr>
</tbody>
</table>

For example, the following two operands represented in this format:

\[A = 1\ 000010\ 10100011\]
\[B = 0\ 000101\ 11001100\]

where \(A = 0x82A3 = -1.10100011 \times 2^{-62}\) and \(B = 0x05CC = +1.11001100 \times 2^{-59}\).

a. Making use of the MAC-2 instruction repertoire and the \(\text{inv}(x)\) function you wrote and tested in programming assignment 3, write and test a procedure (i.e., a function subprogram) \(\text{or}(x,y)\) that computes the bit-wise logical OR of the n-tuples x and y. The arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function \(\text{or}\), which returns the value computed in the ac register (return by value).

b. Making use of the MAC-2 instruction repertoire, write a (void function) procedure \(\text{ashr}(x)\) that performs a 1-bit positional arithmetic (algebraic) right shift of the contents of memory location x and leaves the result in memory location x, where the address x is passed by reference on the stack.

c. Again, making use of the MAC-2 instruction repertoire and whatever other functions (such as the OR function and procedure \(\text{ashr}(x)\) from parts a.) and b.) write and test a procedure (i.e., a function subprogram) \(\text{fadd}(x,y)\) that performs a floating add of single-precision floating point numbers in memory locations x and y and returns the single-precision floating-point format result in the ac register, where all single-precision floating point numbers are represented in the format specified above in Problem 9. Again, the arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function \(\text{fadd}\), which returns the value computed in the ac register (return by value).

c. Test your \(\text{fadd}\) function using the following main program (\(\text{prg4main}\)): ...
Repair the following main program, if necessary, to accomplish the desired results as stated in the comments.

```
/prg4main
EXTRN inv
EXTRN or
EXTRN fadd
x1 0x7D5C
x2 0x7A33
x3 0x0b98
x4 0x02A3
ans1 RES 1
ans2 RES 1
ans3 RES 1
ans4 RES 1
ans5 RES 1
ans6 RES 1
start loco 4020
  swap
  loco x1
  push
  call inv
  stod x1 /create data x1=0x82A3
  stod ans1
  loco ans1
  push
  call ashr /make sure ashr is working
  insp 1
  loco x2
  push
  call inv
  stod x2 /create data x2=0x85CC
  call or
  stod ans2 /make sure OR is working
  call fadd
  stod ans3 /ans3=fadd(x1,x2)
  loco x3
  stol 0
  call ashr /ashr shifts x3 right arithimetically
  call fadd
  stod ans4 /ans4=fadd(x1,x3)
  loco x4
  stol 1
  call fadd
  stod ans5 /ans5=fadd(x3,x4)
  loco x2
  stol 0
  call fadd
  stod ans6 /ans6=fadd(x2,x4)
  insp 2
halt
END start
```