ENEE 350 Homework Set No. 9
(Due: Class 21, Thurs., Nov. 8, 2007)

and

Programming Project 4
(Due: Class 23, Thurs., Nov. 15, 2007)

1. Read Appendix B of text by A. Tanenbaum, *Structured Computer Organization*, 5th ed., Prentice-Hall, 2006, and work the following problems from Appendix B:

 a. Problem B–1.

 b. Problem B–2.

 c. Problem B–3.

2. What sign-magnitude decimal values are represented by the following IEEE 754 single precision floating-point words whose contents are shown using hexadecimal shorthand? (Hint: use C-compiler and formatted output to save yourself from doing considerable work.)

 a. B9EBEDFA

 b. 7F800000

 c. 40490FDB

 d. FF83FD03

3. Print out and read the handout on floating point representations by C. Silio in course website file www.ece.umd.edu/class/enee350.F2007/Notes/fltngpt.ps or fltngpt.pdf.

4. The designers of a particular computer have decided that the computer must be capable of representing single-precision (single-word) floating-point numbers in the range \((-10^{-17} \text{ to } 10^{17})\) with a precision of one part in \(10^5\). Determine the minimal binary word length which must be chosen for this machine, and indicate the floating-point format you would choose for doing this in order to facilitate the sorting of floating-point numbers. (Assume that \(2^{10} \approx 10^3\) to facilitate decimal to binary conversions.)

5. Recall from your reading of Silio’s notes on floating-point representations that the UNIVAC 1100 series computers have 36-bit words and perform 1’s complement arithmetic. Suppose UNIVAC 1100 registers \(A_1\) and \(A_2\) contain the following bit patterns in octal shorthand.

\[
(A_1) = 572057777777 \\
(A_2) = 206556400000
\]

Viewing the contents of \(A_1\) and \(A_2\) as single-precision floating-point numbers:

 a. What sign-magnitude decimal number is contained in \(A_1\)?

 b. What sign-magnitude decimal number is contained in \(A_2\)?

6. In a DEC PDP-11 the contents of two consecutive memory words are (in binary):

\[
10111111111010000 \\
00000000000000000
\]

Recall that the single-precision floating-point format for this machine is of the form: \(1+8+23(24)\) bits with a binary normalized mantissa \(0.1xxx\) as in

<table>
<thead>
<tr>
<th>1</th>
<th>8</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_m</td>
<td>BIASED</td>
<td>BINARY NORMALIZED</td>
</tr>
<tr>
<td>E</td>
<td>MANTISSA</td>
<td></td>
</tr>
</tbody>
</table>

If this 32-bit pattern is interpreted as a single-precision floating-point number, what sign-magnitude decimal number does it represent?

-continued-
7. The IBM 360/370 series computers use a sign-magnitude hexadecimal normalized, biased-exponent, 32-bit representation for single precision floating-point numbers in the following format:

<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm</td>
<td>BIASED EXPONENT</td>
<td>HEXADECIMALLY NORMALIZED MANTISSA</td>
</tr>
</tbody>
</table>

Write the 8-digit hexadecimal representation of the bit pattern in the 32-bits known to contain the single-precision representation of the following floating-point number shown here in both its decimal and octal forms:

\[-(2^{7\frac{2}{13}})_{10} = -(33.1166116611661166\ldots)_8\]

8. Consider the following biased exponent (bias = 2^5), sign-magnitude floating point format for representing binary normalized numbers in single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized fraction, and there are no hidden bits:

<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm</td>
<td>BIASED EXPONENT</td>
<td>BINARY NORMALIZED MANTISSA</td>
</tr>
</tbody>
</table>

Suppose we are given the following two operands represented in this format:

X = 1 000010 1010001
Y = 0 000101 1100110

Show the bit pattern in the single-precision word S that results from the floating add of the contents in X and Y, assuming that the result is truncated to a 7-bit precision fraction.

9. Programming Project 4 (Due: Class 23, Thurs., Nov. 15, 2007): Consider the following biased exponent (bias = 2^6), sign-magnitude floating point format for representing binary normalized numbers in 16-bit single-precision words in a machine with 2’s complement fixed-point arithmetic; the mantissa (significand) is a binary normalized mixed number with hidden bit similar to IEEE754.

For example, the following two operands represented in this format:

A = 1 0000010 10100011
B = 0 0000101 11001100

where A = 0x82A3 = $-1.101000011 \times 2^{-62}$ and B = 0x05CC = $+1.11001100 \times 2^{-59}$.

a. Making use of the MAC-2 instruction repertoire and the inv(x) function you wrote and tested in programming assignment 3, write and test a procedure (i.e., a function subprogram) or(x,y) that computes the bit-wise logical OR of the n-tuples x and y. The arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function or, which returns the value computed in the ac register (return by value).

b. Making use of the MAC-2 instruction repertoire, write a (void function) procedure ashr(x) that performs a 1-bit position arithmetic (algebraic) right shift of the contents of memory location x and leaves the result in memory location x, where the address x is passed by reference on the stack.

c. Again, making use of the MAC-2 instruction repertoire and whatever other functions (such as the OR function and procedure ashr(x) from parts a.) and b.) write and test a procedure (i.e., a function subprogram) fadd(x,y) that performs a floating add of single-precision floating point numbers in memory locations x and y and returns the single-precision floating-point format result in the ac register, where all single-precision floating point numbers are represented in the format specified above in Problem 9. Again, the arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function fadd, which returns the value computed in the ac register (return by value).

d. Test your fadd function using the following main program (prg4main):
Repair the following main program, if necessary, to accomplish the desired results as stated in the comments.

```
/prg4main
EXTRN inv
EXTRN or
EXTRN fadd
x1 0x7D5C
x2 0x7A33
x3 0x0b98
x4 0x02A3
ans1 RES 1
ans2 RES 1
ans3 RES 1
ans4 RES 1
ans5 RES 1
ans6 RES 1
start loco 4020
swap
loco x1
push
call inv
stod x1 /create data x1=0x82A3
stod ans1
loco ans1
push
call ashr /make sure ashr is working
insp 1
loco x2
push
call inv
stod x2 /create data x2=0x85CC
call or
stod ans2 /make sure OR is working
call fadd
stod ans3 /ans3=fadd(x1,x2)
loco x3
stol 0
call ashr /ashr shifts x3 right arithimetically
call fadd
stod ans4 /ans4=fadd(x1,x3)
loco x4
stol 1
call fadd
stod ans5 /ans5=fadd(x1,x4)
loco x2
stol 0
call fadd
stod ans6 /ans6=fadd(x2,x4)
insp 2
halt
END start
```