Electrical and Computer Engineering Department
 University of Maryland
 College Park, MD 20742-3285

Glenn L. Martin Institute of Technology A. James Clark School of Engineering Dr. Charles B. Silio, Jr. Telephone 301-405-3668

ENEE 350 Homework Set No. 9 Fax 301-314-9281 silio@umd.edu
(Due: Class 23, Wed., Jul. 9, 2008)
and

Programming Project 4

(Due: Class 26, Tues., Jul. 15, 2008)

1. Read Appendix B of text by A. Tanenbaum, Structured Computer Organization, $5^{\text {th }}$ ed., Prentice-Hall, 2006, and work the following problems from Appendix B:
a. Problem B-1.
b. Problem B-2.
c. Problem B-3.
2. What sign-magnitude decimal values are represented by the following IEEE 754 single precision floating-point words whose contents are shown using hexadecimal shorthand? (Hint: use C-compiler and formatted output to save yourself from doing considerable work.)
a. B9EBEDFA
c. 40490FDB
b. 7F800000
d. FF83FD03
3. Print out and read the handout on floating point representations by C. Silio in course website file www.ece.umd.edu/class/enee350-1.Sum2008/Notes/fltngpt.ps or fltngpt.pdf.
4. The designers of a particular computer have decided that the computer must be capable of representing singleprecision (single-word) floating-point numbers in the range $\pm\left(10^{-17}\right.$ to $\left.10^{17}\right)$ with a precision of one part in 10^{5}. Determine the minimal binary word length which must be chosen for this machine, and indicate the floating-point format you would choose for doing this in order to facilitate the sorting of floating-point numbers. (Assume that $2^{10}=10^{3}$ to facilitate decimal to binary conversions.)
5. Recall from your reading of Silio's notes on floating-point representations that the UNIVAC 1100 series computers have 36 -bit words and perform 1's complement arithmetic. Suppose UNIVAC 1100 registers $A 1$ and $A 2$ contain the following bit patterns in octal shorthand.

$$
(A 1)=572053777777 \quad(A 2)=206556400000
$$

Viewing the contents of A1 and A2 as single-precision floating-point numbers:
a. What sign-magnitude decimal number is contained in A1?
b. What sign-magnitude decimal number is contained in A2?
6. In a DEC PDP-11 the contents of two consecutive memory words are (in binary):

10111111110100000000000000000000
Recall that the single-precision floating-point format for this machine is of the form: $1+8+23(24)$ bits with a binary normalized mantissa 0.1 xxx as in

1	8	23
$\mathrm{~S}_{\mathrm{M}}$	BIASED	BINARY NORMALIZED EXPONENT

If this 32 -bit pattern is interpreted as a single-precision floating-point number, what sign-magnitude decimal number does it represent?
7. The IBM $360 / 370$ series computers use a sign-magnitude hexadecimally normalized, biased-exponent, 32-bit representation for single precision floating-point numbers in the following format:

1	7	24
$\mathrm{~S}_{\mathrm{M}}$	BIASED	HEXADECIMALLY NORMALIZED
	EXPONENT	MANTISSA

Write the 8 -digit hexadecimal representation of the bit pattern in the 32 -bits known to contain the singleprecision representation of the following floating-point number shown here in both its decimal and octal forms:

$$
-\left(27 \frac{2}{13}\right)_{10}=-(33.1166116611661166 \ldots)_{8}
$$

8. Consider the following biased exponent (bias $=2^{5}$), sign-magnitude floating point format for representing binary normalized numbers in single-precision words in a machine with 2's complement fixed-point arithmetic; the mantissa (significand) is a binary normalized fraction, and there are no hidden bits:

1	6	7
$\mathrm{~S}_{\mathrm{M}}$	BIASED	BINARY NORMALIZED
	EXPONENT	MANTISSA

Suppose we are given the following two operands represented in this format:

$$
X=10000101010001 \quad Y=00001011100110
$$

Show the bit pattern in the single-precision word S that results from the floating add of the contents in X and Y, assuming that the result is truncated to a 7 -bit precision fraction.
9. Programming Project 4 (Due: Class 26, Tues., Jul. 15, 2008): Consider the following biased exponent (bias $=2^{6}$), sign-magnitude floating point format for representing binary normalized numbers in 16-bit singleprecision words in a machine with 2's complement fixed-point arithmetic; the mantissa (significand) is a binary normalized mixed number with hidden bit similar to IEEE754.

1	7	8
$\mathrm{~S}_{\mathrm{M}}$	BIASED	BINARY NORMALIZED
	EXPONENT	SIGNIFICAND

For example, the following two operands represented in this format:

$$
\mathrm{A}=1000001010100011 \quad \mathrm{~B}=0000010111001100
$$

where $\mathrm{A}=0 \times 82 \mathrm{~A} 3=-1.10100011 \times 2^{-62}$ and $\mathrm{B}=0 \times 05 \mathrm{CC}=+1.11001100 \times 2^{-59}$.
a. Making use of the MAC-2 instruction repertoire and the $\operatorname{inv}(x)$ function you wrote and tested in programming assignment 3 , write and test a procedure (i.e., a function subprogram) or (\mathbf{x}, \mathbf{y}) that computes the bit-wise logical OR of the n -tuples x and y . The arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function or, which returns the value computed in the ac register (return by value).
b. Making use of the MAC-2 instruction repetoire, write a (void function) procedure $\mathbf{a s h r}(\mathbf{x})$ that performs a 1-bit position arithmetic (algebraic) right shift of the contents of memory location x and leaves the result in memory location x , where the address x is passed by reference on the stack.
c. Again, making use of the MAC-2 instruction repetoire and whatever other functions (such as the OR function and procedure $\operatorname{ashr}(\mathrm{x})$ from parts a.) and b.) write and test a procedure (i.e., a function subprogram) $\mathbf{f a d d}(\mathbf{x}, \mathrm{y})$ that performs a floating add of single-precision floating point numbers in memory locations x and y and returns the single-precision floating-point format result in the ac register, where all single-precision floating point numbers are represented in the format specified above in Problem 9. Again, the arguments are passed by reference, with address y pushed on the stack first followed by address x pushed on the stack followed by a call to function fadd, which returns the value computed in the ac register (return by value).
c. Test your fadd function using the following main program (prg4main):

Repair the following main program, if necessary, to accomplish the desired results as stated in the comments.

/prg4main			
	EXTRN	inv	
	EXTRN	or	
	EXTRN	fadd	
x 1	0x7D5C		
x 2	0x7A33		
x3	0x0b98		
x 4	$0 \times 02 \mathrm{~A} 3$		
ans1	RES	1	
ans2	RES	1	
ans3	RES	1	
ans4	RES	1	
ans5	RES	1	
ans6	RES	1	
start	loco	4020	
	swap		
	loco	x 1	
	push		
	call	inv	
	stod	x 1	/create data $\mathrm{x} 1=0 \mathrm{x} 82 \mathrm{~A} 3$
	stod	ans1	
	loco	ans1	
	push		
	call	ashr	/make sure ashr is working
	insp	1	
100	x2		
	push		
	call	inv	
	stod	x 2	/create data $\mathrm{x} 2=0 \mathrm{x} 85 \mathrm{CC}$
	call	or	
	stod	ans2	/make sure OR is working
	call	fadd	
	stod	ans3	/ans3=fadd (x1, x2)
	loco	x3	
	stol	0	
	call	ashr	/ashr shifts x3 right arthimetically
	call	fadd	
	stod	ans4	/ans4=fadd (x1, x3)
	loco	x 4	
	stol	1	
	call	fadd	
	stod	ans5	/ans5=fadd (x3, x4)
	loco	x 2	
	stol	0	
	call	fadd	
	stod	ans6	/ans6=fadd (x2, x4)
	insp	2	
	halt		
	END	start	

