
Electrical and Computer Engineering Department

University of Maryland
College Park, MD 20742-3285

Glenn L. Martin Institute of Technology � A. James Clark School of Engineering���� Dr. Charles B. Silio, Jr.
Telephone 301-405-3668

Fax 301-314-9281
silio@umd.edu

ENEE 350 Homework Problem Set 8
Programming Project 3

(Due: Class 21, Mon., Jul. 7, 2008)

The MAC-1 Instruction Repertoire has been extended with the addition of four new instructions and
this new Instruction Set Architecture is called the MAC-2. The MAC-2’s Instruction Repertoire is at-
tached, as is the corresponding microprogram that fetches, decodes and executes these MAC-2 instruc-
tions. This microprogram’s 32-bit binary words reside in the file mpc1, and the corresponding MAL
source code resides in the file mpc1.pascal. These two ascii text files reside in the course webpage, URL:
“http://www.ece.umd.edu/class/enee350-1.Sum2008/Homework/”.

A program to test the new MAC-2 instructions also resides there called tst, and the new opcodes table
used by the assembler (assem) is in the file tst.opcodes new also on this webpage. Use an internet browser
and go to the course webpage and save these files. You should first copy these four files into the working
directory that you will use to accomplish this programming assignment. That way assem and sim can look
for them there.

For each subprogram (subroutine) which uses the new MAC-2 opcodes that you wish to assemble using
assem, (e.g., in files prg3sub1 and prg3sub2) first copy tst.opcodes new into prg3sub1.opcodes new
and into prg3sub2.opcodes new, respectively. Recall that assem looks for the new opcodes table under the
same file name as the program being assembled but with the “.opcodes new” file name extension appended
to the name.

1. Write & test a procedure (i.e., a function subprogram) inv(x) to compute the bit-wise logical complement
(i.e., the 1’s complement) of the argument (passed on the stack by reference) and returned by value in
the ac register. (Recall DRC(x) = RC(x) - 1, and x is a 16-bit word.)

2. Making use of the new MAC-2 instructions and the inv(x) function, write and test a procedure (i.e., a
function subprogram) xor(x,y) that computes the bit-wise logical exclusive-OR of the n-tuples x and
y. Again, the arguments are passed by reference, with address y pushed on the stack first followed by
address x pushed on the stack followed by a call to function xor, which returns the value computed in
the ac register (return by value). Recall x ⊕ y = x

′
· y + x · y

′ = [(x′
· y)′ · (x · y

′)′]′. (Assume that ac
and f are volatile registers; i.e., only the calling program needs to save and restore them if they contain
values to be preserved, so the called routines can use them as scratch registers. Also, n=16, so that x
and y are 16-bit words.)

3. Making use of the new MAC-2 instructions and the xor(x,y) function, write and test a procedure (i.e.,
function subprogram) hd(x,y) that computes the Hamming Distance between the two binary n-tuples
x and y. Again, the arguments are passed by reference, with address y pushed on the stack first followed
by address x pushed on the stack followed by a call to function hd, which returns the value computed
in the ac register (return by value). (Recall that Hamming Distance can be computed by counting the
number of one’s in the n-tuple z, where the difference n-tuple z = xor(x,y); again assume that n=16
for 16-bit words x and y.)

4. Test your functions with the following main program (called “prg3main”) and its data. This program
is located on the next page and the source code can be copied from the course webpage for your
convenience. Turn in printouts of the separate assemblies, linkage, and the snapshots of memory
before and after execution with simulator sim. Assuming that the absolute program after linking is
prg3main.abs, then you must call sim with the following statement: “sim prg3main.abs mpc1
mpc1.pascal”. Highlight and explain the final contents of the locations containing the test results.
Be sure to comment cogently your code.

see next page for prg3main



/prg3main

EXTRN inv

EXTRN xor

EXTRN hd

ans1 RES 1

ans2 RES 1

ans3 RES 1

ans4 RES 1

ans5 RES 1

ans6 RES 1

ans7 RES 1

x1 0x6A34

x2 0x3CD1

begin loco 4020

swap

loco x2

push

call inv

stod x2

loco x1

push

call inv

stod x1

call xor

stod ans1

call hd

stod ans2

loco x3

stol 1

call xor

stod ans3

call hd

stod ans4

loco x2

stol 0

call xor

stod ans5

call hd

stod ans6

loco x2

stol 1

call xor

stod ans7

insp 2

halt

x3 0x7E0B

END begin

2


