
����
UNIVERSITY OF MARYLAND

GLENN L. MARTIN INSTITUTE OF TECHNOLOGY � A. JAMES CLARK SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Introduction to Software Tools.

Several software tools are available to go with the hypothetical computer (Mic-1/Mac-1) of Chapter
4 in A. S. Tanenbaum's, Structured Computer Organization, 3rd Edition textbook, which has been
summarized and augmented in the Microarch.ps or Microarch.pdf notes by C. Silio. These software
tools include a microprogram assembler, a \macroprogram" assembler for the conventional machine
level instructions of Mac-1, and a simulator that will allow running the machine using micro- and
macro-programs that have been generated using these other tools. These programs, along with
various other �les such as sample programs, etc., reside in a directory that may be changed at any
time by the computer sta�. Thus the mechanism for access to these �les is handled in a way that
may not be familiar to you.
Before you can use any of �les in a particular computer run, you must type the command

tap ee350

This command will make sure that your run has access to the programs no matter where they may
have been moved. �

Once this tap ee350 command has been executed, for the rest of that computer run (until you
logout) the simulator, assembler, loader, and microprogram assembler can be run using the com-
mands given in the handouts for these programs. Other �les, such as sample programs, can be
accessed using

$EE350

as though it was the directory name. As an example, the command

ls $EE350

will tell you what is in the directory.

Getting Started; Windows.

Once you have gotten your Glue (Open Lab) account and password, and have �gured out how to
login and logout, you need to know about some of the features of UNIXTM �� in order to e�ectively
use the software tools for ENEE 350. This is not the place to give a full introduction to UNIX but
a word of warning is in order for those who are accustomed to DOS. In UNIX �le name paths use
/, as opposed to the n in DOS.
The simulator program, called sim, runs on Sun 3's, Sun 4's, or DECstations under X-windows.
You do not need to know which type of machine you are actually logged into; the software is set

� In order for the tap command to work, the �le named .cshrc in your home directory should include
the following (as is the case automatically in the default setup for new accounts):
if (-e /local/software/bin/.twigrc) then source /local/software/bin/.twigrc

�� UNIX is a trade mark of UNIX Systems, Inc.

1

up to automatically query your machine and pick the correct version. Most of the workstations
you will be able to use are set up as X-terminals, and you will automatically be in the X-windows
environment once you are logged in. If by any chance the screen does not show a window (an area
with a border taking up less than the entire screen), then the command

startx

should initialize the X-windows environment. With the cursor within the window, type your

tap ee350

to get set up so that you have access to the ENEE 350 software.
The mouse can be used to move, resize, and otherwise manipulate this window, and can also be
used to create additional windows, destroy windows, etc. (You will have to type the tap command
in any additional window from which you wish to access the ENEE 350 software, since each window
is in e�ect treated as a separate login.) Pressing the di�erent mouse buttons with the cursor in the
various border regions of a window causes di�erent useful window-manipulation actions.

Getting Started; Editing Files.

You need to learn at least the rudiments of one of the text editors which run under Unix. The
most popular choices are vi and emacs. Information on both (and the entire vi manual) is available
through the \help" function in the dash bar at the top of the normal X-windows screen. The choice
of which editor to use is a personal one, and these notes will make no attempt to guide you through
editor usage.

Overview of Software Tools.

The structure of the machine we have been using as our example is a set of hardware provided with a
microprogram that interprets conventional machine level instructions. In order to do anything useful
this hardware would have to be provided with a (binary) conventional machine level program in its
main memory. In addition it would need a (binary) microprogram, to interpret the conventional
machine level instructions, in its control memory. The set of software tools for the Tanenbaum
example machine is centered around a simulator for this hardware. Just as with a real hardware
version this simulator must be provided with a \macroprogram" (the conventional machine level
program) and with a microprogram in order to do anything useful. Because the simulator also
provides an informative graphic display of what is going on in the hardware, you need to also
provide the �lename of a �le containing the symbolic microcode. The simulator program expects
a hexadecimal version of the macroprogram, rather than a binary one, so the macroassembler
provided as part of the set of tools automatically generates such a hexadecimal �le as its output.
The executable programs in the tool set include

micgen microprogram assembler
assem macroprogram assembler
load linking loader
sim simulator and display program

2

In addition, there are some \disassemblers" for both the micro and macro levels which take the
binary or hexadecimal code and try to translate it back into something that is at least semi-readable
by a human.

dismic microprogram disassembler
dismac macroprogram disassembler

To allow working with essentially the machine of the Mic-1 example the microcode of Figure 4-16
in the text, with one change, is provided in the �le

$EE350=halt:pascal

The one change is that a \halt" microinstruction has been included so that it is possible to stop the
simulated machine. Similarly, the macroassembler assem recognizes the mnemonics of the Mac-1
instruction set (Figure 4-14) plus the additional instruction HALT with opcode FFFF16.

The Microprogram Assembler.

The tool to provide microprograms from an input format that is at least somewhat palatable to a
human is micgen. You will need to use this program only when you write microcode to implement
new conventional machine level instructions. The convention used in this micgen command, and
in the remainder of this set of notes, is that the the things you are to type literally appear in
``typewriter'' font and italic is used to indicate �lenames you need to supply, such as input�le
and output�le.
The microcode listing in Figure 4-16 of Tanenbaum should be su�cient to indicate the basic capa-
bilities of the microassembler.

A word of warning; the command

micgen out�le

will give an error message and not execute if out�le already exists. This keeps you from overwriting
a previous �le, but gets annoying at times. Use the command

rm output�le

to delete the old output�le before rerunning the microassembler.

The Macroprogram Assembler.

The macroprogram assembler is called with the command

assem program�le

and is quite adequately described in the handout. No options are needed or permitted. The
program�le consists of your program written using the mnemonics of Mac-1 (Figure 4-14) and
allowing the use of symbolic addresses. See the \Assembler and Linking Loader; User's Manual"
for input formats, etc.

3

The Linking Loader.

Subroutines may be assembled separately from their corresponding main program, using separate
assem commands. The load command links subroutines and main programs and generates an
absolute load module for use by the simulator. See the \Assembler and Linking Loader; User's
Manual" for details on the formats for the command.

The Simulator.

There is a separate handout, \Instructions for Use of the ENEE 350 Simulator", which outlines the
various features of the simulator and how to use them.

The Disassemblers

These programs attempt to translate binary micropgrograms and machine language programs,
respectively, into something approaching a human-readable source from which the binary might
have been generated using micgen and assem.

The microprogramm disassembler call is

dismic �lename

and the program expects that �lename contains a legal binary microprogram. If used on a �le
which is not a binary micropgrogramm it does its best to translate what it �nds, giving somewhat
strange looking results.

To translate a binary machine language program prog�le back into assembly language use the
command

dismac prog�le

Two comments are needed with regard to the dismac program. First, it translates every line as
though the line contains a machine language instruction. This means that even non-executing parts
of the program, such as constants, show up as though they were assembly language instructions.
Second, this program is set up to allow you to enter a binary machine language instruction from
your terminal and see the corresponding assembly language version. Since it normally waits for
more input, even after �nishing with an input �le, yoy need to type \q" (quit) to exit the dismac
program.

4

����
UNIVERSITY OF MARYLAND

GLENN L. MARTIN INSTITUTE OF TECHNOLOGY � A. JAMES CLARK SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Use of the Microcode Translator (micgen)

This program, which is part of the set of ENEE 350 tools which also includes an assembler, a
linking loader, and an X-windows based simulator, is provided courtesy of Prof. Paul Amer of the
University of Delaware (He is also responsible for the disassemblers; the other programs in the set
were generated at UMCP).

The purpose of the program is to translate microinstructions which are given in a pascal-like format
(see Chapter 4 of Tanenbaum's text Structured Computer Organization, 3rd ed.) into binary strings
suitable for use in the simulator program.

To translate the symbolic microcode in your �le \foo" and put the resulting binary microcode in a
�le named \bar", use the command line

micgen foo bar

One of the features of the program set is the ability to write new microcode for machine-language in-
structions which are not in the original instruction set of the hypothetical computer in Tanenbaum.
The translation of such altered symbolic microcode �les is the principal use for micgen.

There are only a couple of cautions concerning its use:
(1) The last line of any symbolic microcode �le used as input to micgen must be terminated with a

carriage return. Otherwise the micgen program will hang.

(2) The error messages generated by micgen can be very misleading; do not give much credence to
their details, except for the line number of the �rst error reported. If you get an error message
there is an error in your symbolic microcode, and there is almost certainly an error on the �rst
line reported, but the message is often of little use in �guring out what the error is. In general, the
�rst line number reported as in error is correct, in that there is some error associated with that
line. Figure out what it is, correct it and then try again before paying any attention to other error
messages. Note item (1) above, which is one of the most common causes of error messages.

(3) The micgen program is quite stupid in one respect. When presented with a line of microcode such
as

34:ac:=pc+mbr;

it chokes, generating an error message. This is because it assigns the �rst operand it sees to the
A-bus and the second operand to the B-bus, and the MBR is connected only to the A-bus. The
error message is something about a bus conict. If this is changed to

34:ac:=mbr+pc

it works �ne, and is translated correctly.

5

����
UNIVERSITY OF MARYLAND

GLENN L. MARTIN INSTITUTE OF TECHNOLOGY � A. JAMES CLARK SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Assembler and Linking Loader; User's Manual

This handout describes an assembler and linking loader for the hypothetical computer of Chapter 4
in Tanenbaum's 3rd Edition textbook, Structured Computer Organization, which is also described
in the Example Microarchitecture Notes (\Microarch.ps" or \Microarch.pdf") put together by C.
Silio. The standard assembly language instruction set is as given in Figure 4-14, page 185, of
Tanenbaum, with the corresponding microcode being that of Figure 4-16. In the Microarch Notes
the instruction set is speci�ed in Figure 11 and the corresponding microcode is speci�ed in Figure 13.
One addition has been made to both the machine language instruction set and the microinstruction
set over what is given in Tanenbaum's 3rd edition textbook; namely, a \HALT" instruction with
opcode ffff (hex) has been added. These programs are part of a suite of programs supporting this
hypothetical machine, the other routines being a \microcode assembler", a simulator with graphics
capabilities, and a pair of \disassemblers" which translate binary machine language and binary mi-

crocode, respectively, into something at least semi-readable by a human. y There are provisions for
adding new machine language instructions by rewriting the microcode, and corresponding provisions
for telling the assembler about these new instructions. The simulator takes a �le containing the
machine language program and puts the program into the simulated main memory, and also takes
a �le containing the microcode and puts that into the simulated control store. This allows much
experimentation with both microcode and conventional machine level instructions. The present ver-
sions of the local software are still somewhat experimental, so no guarantees can be made about
being bug-free. In fact, any program this long is almost sure to have bugs; as of this writing the
C language source �le for the assembler has 2027 lines and that for the linking loader 680 lines.
Things should actually work fairly well, as students have now hunted for bugs for more than ten
semesters; there are no known bugs.

Please report all real or suspected bugs to me via email. My email address is:

pugsley@eng.umd.edu

I. Introduction.

An assembler is a program which translates other strings of text into machine language. The
present assembler allows the separate translation of main programs and subroutines; i.e., the various

y The original support software was due to Prof. Paul Amer at the University of Delaware. The
micro-assembler and the disassemblers are still his programs, but the others have been written
locally by Prof. James Pugsley without using the U. Del. code. All of the programs are written in
C (hopefully in ANSI C; at least they were all compiled successfully using the \-ansi" option on
the C-compiler). It should in theory be possible to compile any of them except the simulator on
any machine with an ANSI C compiler. The simulator makes extensive use of the Xlib commands
from the X-Windows system, and will therefore run only on a machine which also supports X-
Windows (such as Xfree86 under Linux). For some details concerning the X-libraries needed see the
README �le in the directory $EE350, which is available after executing a \tap ee350" command.

6

routines do not all need to be in the same �le. Because these routines eventually need to be made
part of a single absolute load module that gets put into the computer's main memory, there is
another program (called a linking loader) which takes care of this part of the job. The assembler
translates each �le assuming that memory location zero is the �rst location used by the routines
in that �le. The output of the assembler consists of a relocatable object program which is the
appropriate code along with ags that indicate which addresses need to be �xed if the program
is not actually loaded starting at main memory location zero. The linking loader then takes the
relocatable object versions of all of the routines and puts them together in a single absolute object
program which is often referred to as the absolute load module.
The assembler is invoked by the command

assem <filename>

where \<�lename>" represents the name of a �le containing source (assembly language) programs.
If the sample program shown below in Figure V.1 is in a �le named \prog" in your current directory,
then the command

assem prog

invokes the assembler to translate this program. The assembler generates an immediate set of
messages on your screen, and also creates three new �les named \prog.rel" (the relocatable object
code), \prog.list" (a more complete listing of what the assembler did to your source program), and
\prog.esd" (the external symbol dictionary needed by the linking loader).
If you have several di�erent �les containing a main program and subroutines which all need to be
used together, you must call the assembler once for each �le. If there are three �les are denoted by
\<name1>", \<name2>" and \<name3>" there will be a total of nine �les generated by the calls
to the assembler. To link and load these �les use the command

load <name1> <name2> <name3>

The format here is the command \load" followed by the names of �les, with one or more blanks
(or tabs) separating the �le names. The linking loader looks for the \ .rel" and \ .esd" versions of
each �le name, and should generate an error message if it does not �nd some of what it needs.
The output of the loader is the �le <name1>.abs which contains the absolute load module. In
addition, the loader will generate a listing on your screen of the �nal combined external symbol
dictionary, which gives information on all of the global symbols and their values.

II. Format of Assembly Language Instructions.

The format of each assembly language statement is

[label] <operation> [operand] [/comment]

where square brackets indicate features which are optional or do not occur in every instruction.
Every instruction must have a nonblank operation �eld, all of the other �elds are optional in at
least some instructions (but may be required for other instructions). Note that the names of the
�elds are only generally descriptive of their purposes. The operation �eld, for example, can contain
the mnemonic for a machine operation, an assembler directive, a symbol, or a constant. In some
of these cases it is stretching things to call what is in the �eld an operation.
A label, if present, must start in column 1 and must have an alphabetic character as its �rst
character. All characters in the symbol must be alphabetic, numeric, or ' ' (underline).
The operation-�eld, as indicated above, may contain a variety of things depending on the particular
usage.

7

The operand-�eld may contain either a constant or a symbol. In addition it is possible to have a
literal in the operation �eld. Literals are discussed below in section III.
Fields are separated by one or more blanks or tabs. There is no provision for continuing a statement
on a second line because there is zero likelihood of ever wanting to do so. One of the most common
errors is to get your \comment" starting not in the leftmost column but one column to the right.
This means it gets treated by the assembler as being in the operation �eld rather than in the
comment �eld. While the assembler doesn't care whether you line things up neatly, as is done in
the examples on page 6. both the TA's and I do when we come to grade your work; you should use
tabs to keep things aligned.
The comment-�eld extends from an initial slash , '/', to the end of the line. The judicious use of
comments makes programs much more understandable, but too many comments is almost as bad
as none at all.

III. Constants, Symbols and Literals.

The descriptions above of the various �elds refer to constants and symbols, and these must have
certain forms to be recognized by the assembler.

Constants Constants must be integers and may be speci�ed in either decimal or hexadecimal.
Decimal constants are written in the usual form. Hexadecimal constants must have the characters
\0x" as a pre�x. Thus the constant �fteen in hex would be typed as \0xf" for the assembler. Either
type of constant may be preceded by a \+" or a \-". Leading 0's will be ignored; but note that
leading 0's in the hex case follow the pre�x \0x". Thus the constant �fteen may be speci�ed in
hex as \15", or \015", or \0xf" or \0x0f" or \0x00f", etc. Trying to use something like \00xf" is
incorrect, and will generate an error message.

Symbols Symbols are one of the main features of assembly language that distinguish this level
from the machine language level. A symbol is a string of characters each of which must be one of
alphabetic, numeric, or ' ' (underline). The �rst character in the string must be alphabetic, and
the limit to the number of characters in a symbol is currently 10. As examples, \asub xxx", \x2"
and \abc2 43zp" are legal symbols, but neither \2xy" nor \a4.sub" is.

Literals This assembler, in common with many, allows the programmer to specify constant data
without having to consciously reserve a storage location and put the contstant into that location.
This is done by enclosing the constant in parentheses and treating the resulting character string as
though it were a symbol. The process is probably most readily described through a simple example.
The assembly language statement

lodd 3

causes the contents of memory location 003 to be copied into the accumulator. By contrast, the
statement

lodd (3)

causes the assembler to reserve one memory location whose symbolic address is (3) and into that
location to put the code for the integer 3. Any legal constant can be enclosed in parenthesis to
form a literal. Try some examples of literals and look at the resulting listing �le; in particular see
what shows up in the symbol table.

The assembler makes two passes over the source language program. In the �rst pass the various
symbols are identi�ed and their values determined. Then in the second pass the assembler generates
the relocatable code, inserting the values of the symbols. One common use for symbols is as symbolic

8

addresses. You should be careful to distinguish between the value of a symbol used as an address
and the contents of the addressed location.

IV. Assembler Directives.

Assembler directives (sometimes called \pseudo-instructions") provide information to the assembler
relating to how it is to translate the given source program. Assembler directives appear in the
operation �eld of an assembly language statement but do not result in the generation of any
relocatable code. The paragraphs in this section describe each of the available assembler directives,
in alphabetic order; examples of their use are given in section VI.

END Used (with a symbol or constant in the operand �eld) to indicate to the linking loader, and
eventually to the simulator, that the initial value of the program counter should be the value of
the operand. If there is no END statement the starting address is taken to be 000. Only a main
program should contain an END directive, and should contain no more than one such.

ENTRY Used with \<symbol> in the operand �eld to indicate that <symbol> is the entry-point to
a subroutine. Speci�es that <symbol> is global (i.e., usable by routines outside the �le containing
the current routine). You can think of this as telling the world that the value of <symbol> is
de�ned here, should the world need to know.

EQU (for \equate") Used to de�ne the value of a symbol. The format is

\<label> EQU <value>"

where value may be either a constant or another symbol whose value is already known. This latter
restriction prevents \forward references"; thus the sequence

x EQU 2

y EQU x

is legal, de�ning both x and y to have the value 2, while the sequence

y EQU x

x EQU 2

is not legal, since it attempts to equate y to something which has not yet been given a value. A
smarter assembler might allow such forward references, as long as they did not become circular and
thus ultimately ambiguous.

EXTRN Used with<symbol> in the operand-�eld to indicate that<symbol> is referenced in routines
in the current �le, but is de�ned (given a value) in some other �le. In that other �le <symbol>
should appear as the operand in an ENTRY or GLOBAL directive. This keeps the assembler from
objecting that the value of <symbol> is not known, and leaves it to the linking loader to correctly
set the value at link time.

GLOBAL (Actually identical in its action to ENTRY.) Used to de�ne a symbol as global and available
for use by other �les. The symbol need not denote an entry point to a subroutine.

RES (for \reserve") Used with a constant in the operand �eld to reserve memory locations. E.g.,
the line

answer RES 3

would reserve three main memory locations, the �rst of which has symbolic address \answer". Note
particularly that this directive simply reserves the locations, it does not in any way specify what
the contents of these locations will be initially. In fact the contents will actually be random. (You
might check this by assembling a program containing an RES directive and then loading it more
than once. A look at the \ .abs" �les generated by the two di�erent calls to the loader will show
that the contents of the reserved locations are not the same in the two absolute load modules.)

9

V. De�ning new opcodes for the assembler.

It is possible to de�ne up to 7 new instruction-mnemonic/opcode combinations for any given pro-
gram. If the �le in which the assembly language program resides is named xyz, so that it will be
translated using the command assem xyz, then new instructions for this program may be de�ned
by creating a �le named xyz.opcodes new which contains one line for each new instruction, with
the format for each line being
<instruction mnemonic> ''tab'' <16-bit opcode for

instruction> ''tab'' <number of bits of operand for instruction>

Here \tab" means just hit the Tab key. The assembler always looks for such a �le when translating
a program. The absence of such a �le generates the message seen in the examples above; \No
new opcodes speci�ed for this program". There are a couple of restrictions on this feature of the
assembler: 1) you cannot rede�ne any existing opcodes and must choose an unused one for the \op-
codes new" feature. This means, among other things, that no new memory-reference instructions
can be implemented, since all possible opcodes with 12-bit operand speci�cation have already been
de�ned; 2) the only allowed values for the number of operand bits are 8, 4 and 0.

VI. Examples.

As a simple example of what the assembler and linking loader do, assume that the following main
program, shown in Figure V.1, is contained in the �le \mainprog" in the current working directory.

x EQU 2

EXTRN addv

a 12 /integer twelve

b 0xf /integer fifteen

ans RES 1 /reserved for answer

go lodd a

push

lodd b

push

call addv

insp x

stod ans

halt

END go /starting address

Figure V.1. Example main program.

The assembler generates messages as it works indicating what it has found and how it is translating
this. Error messages are generated for, hopefully, all of the illegal and even some of the legal but non-
useful things you might try to do in your source program. Any suggestions as to more meaningful
or additional error messages will be appreciated. The command

assem mainprog

will provide on your screen the information shown in Figure V.2.

10

No new opcodes specified for this program.
0 0 x EQU 2

1 0 EXTRN addv

2 0 a 12 /integer twelve

3 1 b 0xf /integer fifteen

4 2 ans RES 1 /reserved for answer

5 3 go lodd a

6 4 push

7 5 lodd b

8 6 push

9 7 call addv

10 8 insp x

11 9 stod ans

12 10 halt

13 11 END go /starting address

Figure V.2. Appearance of screen when main program is assembled.

At this point it is probably instructive to look at some of the other �les generated by the assembler.
The �le \mainprog.list" can be viewed by use of the command

more mainprog.list

and is as shown in Figure V.3.
The bottom portion of this list �le consists of the symbol dictionary for the program. This gives
the symbol, its value, whether this value is absolute or must be altered when the loader decides
where the program really goes in memory (called relocation), whether the scope of the symbol is
local (this �le only) or global (de�ned and/or referenced in another �le), and for global symbols
whether the symbol is de�ned (D) in the current �le, referenced in the current �le but de�ned
elsewhere (R) or is the program starting address (S).
The other �les you might want to examine at this point are those which are passed along to
the linking loader (mainprog.list is for human bene�t only). These consist of \mainprog.rel" and
\mainprog.esd" which are, respectively, the relocatable object �le and the external symbol dictio-
nary derived from \mainprog". All of the information in these �les is also contained in the \ .list"
�le, so they will not be reproduced here.
One of the features of this example main program is that it calls a subroutine whose source code
is in some other �le. This is signi�ed by the EXTRN addv statement on line 1. The code for
the subroutine is very simple (this is just the example we had on the board in class) and is given
in Figure V.4, where there are no comments because the program is self-explanatory. The line
ENTRY addv de�nes the symbol \addv" as global so that its value can be inserted where needed
by the linking loader.
If the subroutine is in a �le named \sub" then it is assembled using the command

assem sub

You should try this and look at the information that appears as a result of this command. The
assembler generates a �le \sub.list" which is shown in Figure V.5.
The next step is to link the main program and the subroutine, which is done with the command

load mainprog sub

11

Line Loctr Code Rel Label Op Operand Comment

0 0 x EQU 2

1 0 EXTRN addv

2 0 000c abs a 12 /integer twelve

3 1 000f abs b 0xf /integer fifteen

4 2 rel ans RES 1 /reserved for answer

5 3 0000 rel go lodd a

6 4 f400 abs push

7 5 0001 rel lodd b

8 6 f400 abs push

9 7 e000 ? call addv

10 8 fc02 abs insp x

11 9 1002 rel stod ans

12 a ffff abs halt

13 b END go /starting address

Symbol Value REL Scope EXT

x 0002 A L

addv 0000 ? G R

a 0000 R L

b 0001 R L

ans 0002 R L

go 0003 R G S

Figure V.3. Contents of �le \mainprog.list".

ENTRY addv

addv lodl 1

addl 2

retn

Figure V.4. Example subroutine.

This creates a new �le named \mainprog.abs" which contains the absolute load module. This �le
is shown in Figure V.6.
The load command will attempt to link and load whatever relocatable object �les you specify on
the command line. The loader looks for the \ .rel" version of each �le and proceeds to link them.
If you have more than one main program there will be confusion as to the correct starting address,
but the loader should give a message telling you what it has assumed. If the same global symbol is
used in more than one �le, the loader should also tell you about that error.
It is instructive to execute the command

load sub mainprog

and compare the resulting absolute load module with the one given above in Figure V.6. y The

y This second load module will be named \sub.abs". Since the loader has no real way to tell what

12

Line Loctr Code Rel Label Op Operand Comment

0 0 ENTRY addv

1 0 8001 abs addv lodl 1

2 1 a002 abs addl 2

3 2 f800 abs retn

Symbol Value REL Scope EXT

addv 0000 R G D

Figure V.5. Subroutine \sub.list" �le.

START = 0003

000c

000f

1c2f

0000

f400

0001

f400

e00b

fc02

1002

ffff

8001

a002

f800

Figure V.6. Load module; �le \mainprog.abs"

load modules will not be identical. Memory gets allocated to the �rst-named �le �rst, so the load
module in Figure V.6 has the main program in memory starting at location 000, and the subroutine
following the main program. The load module \sub.abs", by contrast, has the subroutine �rst
starting at location 000, followed by the main program. Note the di�erence in the starting address
reported to the simulator (the �rst line of the load module �le).

is a main program and what is a subroutine it uses the �rst �le name it gets as the name for the
load module.

13

����
UNIVERSITY OF MARYLAND

GLENN L. MARTIN INSTITUTE OF TECHNOLOGY � A. JAMES CLARK SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Instructions for Use of the ENEE 350 Simulator

These instructions are for the X-windows based simulator for the hypothetical computer from
Chapter 4 of Tanenbaum's text, Structured Computer Organization, 3rd. ed, as summarized and
extended in C. Silio's Microarch notes. Students have tested the software for many semesters so it
should be relatively error free.

As with all of the ENEE 350 software, before actually calling the simulator you will need to execute
the command

tap ee350

This gives your run access to the ENEE 350 programs. If you are using more than one window, each
window from which you want to access the course programs must have had such a tap command
executed in it.

Starting the simulator.

The simulator must be called from within a window in the X-windows system. Most machines in
our open laboratories automatically start X-windows when you login.

The command to start the simulator is of the form

sim <main.abs> <binary-micro> <symbolic-micro>

where:

(a) <main.abs> is the name of the �le containing the absolute machine language program (output
from the load command). y

(b) <binary-micro> is the name of the �le containing the binary microcode (use \$EE350/halt"
if you have not changed the microcode).

(c) <symbolic-micro> is the name of the �le containing the symbolic microcode (use
\$EE350/halt.pascal" if you have not changed the microcode.

Thus, for example, if you have a main program in a �le named main which calls a subroutine
which is in a �le named sub the sequence of commands to assemble both programs, load the
resulting absolute load module, and start the simulator to check the execution of the program would
be:

y \.abs" because this �le is normally created as the output of the load program, which automatically
appends the \.abs" when it creates the �le.

14

assem main

assem sub

load main sub

sim main.abs $EE350/halt $EE350/halt.pascal

Move the cursor so that the simulator window �ts on the screen and click the left-hand mouse
button once to see the datapath drawing.

Controls.

The simulator is controlled by a combination of mouse buttons and keys on the keyboard.

Mouse Buttons. Each of the three mouse buttons has a �xed function.

left button The left mouse button steps the simulator. What a \step" consists of is mode
dependent; modes are controlled from the keyboard and are discussed below.

middle button The middle mouse button is used to pop up a window showing the contents of
the lowest 512 memory locations (addresses 000-1ff). This is the region of memory in which your
program normally resides. Clicking the button again will remove the window.

right button The right mouse button is used to pop up a window showing the contents of the
highest 512 memory locations (addresses e00-fff). This is the region of memory normally used for
the stack. Note: in its current con�guration the simulator initializes the stack pointer to �fc. The
highest four memory addresses refer to device registers rather than to actual memory locations.

Keys. Certain keys or key sequences are used to control the operating mode of the simulator. The
pertinent keys are listed in alphabetic order below.

c or C (clock) Puts the simulator into \clock-pulse" mode. In this mode each click of the
left mouse button advances the simulation by one clock pulse (there are four clock pulses per
microinstruction).

g orG (go) Puts the simulator into \run-until-halt" mode. One click of the left mouse button will
cause the simulator to run without stopping until it has reached and executed a \halt" instruction.
Note that if your program contains no halt instruction the simulator will never stop. See the
Warnings and Error Recovery section below for what to do in this case.

i or I (instruction) Puts the simulator into \instruction" mode. In this mode each click of the
left mouse button will advance the simulation by one machine instruction.

m or M (microinstruction) Puts the simulator into \microinstruction" mode. In this mode each
click of the left mouse button advances the simulation by one microinstruction.

pa or PA (pause at) actually pA and Pa would also work) This key combination pops up a
window into which you can type the mnemonic of a machine instruction, such as \lodd" or \CALL"
(not case-sensitive) if the cursor is moved to the pop-up window. In this pop-up window, either the
backspace or delete key may be used to correct your typing. Pressing the return key transmits your
input to the simulator and removes the pop-up window. The simulator will now be in \pause-at"
mode, and each click of the left mouse button will cause the simulator to advance until either it
has completed execution of the next instruction you speci�ed in the pop-up window or until it has
completed a halt instruction. The mode display at the lower right of the simulator window will tell
you what you speci�ed. Again note that if you specify something that is not a legal mnemonic for
the standard machine language instruction set there will never be a match and the simulator will
not stop unless it hits a halt instruction.

pe or PE (pause every) Pops up a window into which you can enter an integer. Pressing the return
key transmits the integer, and puts the simulator into \pause-every" mode. In this mode each click

15

of the left mouse button will advance the simulation by this integer number of machine instructions.
Note that pause every 0 instructions is not useful, since the simulation will not advance. Again,
simulation will stop if a halt instruction is reached.

q or Q (Quit!) Exit the simulator.

r or R (restart) Restarts your program. I.e., puts the program counter back to the appropriate
starting address as determined from the absolute load module, restores the contents of the portion
of memory holding your program to the values they contained when the program was �rst loaded,
and reinitializes the registers. The portion of memory used for the stack area is not initialized,
since the contents of this portion of memory should have no bearing on how your program operates
(you should assume there is garbage there in any case).

s or S (save) Saves the contents of the simulated memory in the �le <main>.mem start (if key
pressed before simulator is started or immediately after a restart) or in the �le <main>.mem end (if
key pressed when the machine has executed a halt instruction). You can only save the initial and
�nal contents of the memory, but you can look at the memory whenever the simulator is stopped
by clicking the middle mouse button.

Note that keys have an e�ect only when the simulator is stopped. If it gets hung up and just keeps
running you will have to do something other than hit one of the keys described above.

Warnings and Error Recovery

Any unexpected key should ring the bell on your terminal but have no other e�ect on the simulator.
If you hear the bell when you press a key it means that the key you have hit is not appropriate
with the simulator in its current state.

The �le containing the C-language source code for the current version of the simulator is more than
3800 lines long, and there are certainly bugs in the program. It is recommended that when you
initially position the simulator on the screen with the mouse that you leave showing a corner of the
window in which you typed the \sim" command. Putting the cursor in that window and typing
Control-C (hold the Control key down while typing C) will abort the simulator job. This is the
quickest way out if you are hung up in a simulated in�nite loop for some reason, or the simulator
has decided to run wild.

Control-Z can be used to suspend the simulator, as with most programs under Unix, but in this
case this feature is not particularly useful. The X-windows environment queues up events such
as keypress and buttonpress events, and when you restart the simulator using the \fg" command
all of the queued up events get processed. There is currently no way to interrupt the simulator
(when it is churning away) that will allow a clean restart from the point of interruption. It seems
as though the variety of modes provided should make such an interrupt feature unnecessary.

Please report all real or suspected bugs via email to pugsley@eng.umd.edu

Any suggestions for modi�cations that would improve the simulator are also welcome.

16

����
UNIVERSITY OF MARYLAND

GLENN L. MARTIN INSTITUTE OF TECHNOLOGY � A. JAMES CLARK SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

TSIM

This simulator for the machine of Chap. 4 in Tanenbaum's 3rd edition text is provided courtesy of
Kevin Hildebrand, who was an ENEE 350 student at the time he wrote it. It does not require the
use of X-Windows.

Instructions for Mac-1 Simulator (Text Version) Rev. 5/18/92

This program will simulate execution of programs written in Mac-1. It can be used to step through
each microinstruction, or it can step by macroinstructions. The simulator actually uses assembled
microcode to perform execution, so changes in the microcode can be observed. The simulator will
show the currently executing micro and macro instruction in symbolic representation, although if
a di�erent microcode other than 'halt' is used, the symbolic representation of the macro-assembly
may not be correct. Note, however, that the simulator will still correctly execute these instructions.

To start the simulator, type the following:

tsim <object file> [<microcode file> <symbolic microcode file>]

For example, if your object �le is Prog1.abs and you are using the `halt' microcode, you would
type:

tsim Prog1.abs halt halt.pascal

If you omit the .abs extension on the object �lename it will be automatically appended for you.
If you leave o� the microcode �lenames, the simulator will use the �les `halt' and `halt.pascal'. It
will �rst look for these �les in the directory pointed to by the environment variable EE350 (set
automatically if you use `tap ee350') and then it will look in your current working directory.

The simulator screen will appear and you will see the command prompt at the center left of the
screen. At the top right are the memory and stack windows. Across the bottom half is the
microinstruction execution area and at the top left is the macroinstruction area. Any micro or
macro instructions shown are the instructions to be executed next. The values in the registers are
from the execution of the previous command. The stack window will shift up or down depending
on the location of the stack pointer. If you need to see more of the stack you can use the memory
[D]ump command, described below.

Commands: (simply type the letter that is inside the brackets)

[S]: Prompts for the starting address shown in the Memory window. For example, typing address 0005
will display memory locations 0005 through 000C. Addresses entered are in hexadecimal.

[T]: Toggles between showing the execution of each microinstruction and showing the execution of each
macroinstruction.

17

[D]: Prompts for a starting address used to display one screenful of memory. The current screen is
saved and the program will switch to 'Dump' mode. There are several commands available in
Dump mode, which is described below.

[G]: Executes your assembly language program until it encounters a halt instruction or a breakpoint.
You will not see the steps as they execute, only the �nal result. Note: if your program does not
have a halt instruction, or you encounter an in�nite loop, pressing control-C will stop the simulator.

[B]: Shows the current breakpoint settings and allows you to change breakpoints. See below for a
description of the breakpoint editor.

[Q]: Exits the simulator.

Pressing `?' will display a quick reminder of what each command letter stands for. Pressing any key
other than those listed above will step one micro or macro instruction, depending on which mode
you have selected. The program when �rst started will be in microinstruction execution mode.

Memory Dump mode commands:

After pressing [D] at the main simulator screen and entering a starting address, you will see a
screenful of memory locations. You now have the following options:

[F]: Move forward to the next screenful.

[B]: Move backward to the previous screenful.

[D]: Enter a new starting address.

[O]: Outputs the currently displayed screen to a �le. You will be prompted for a �lename in which to
save the data. The �le can then be printed or viewed using standard Unix commands.

[Q]: Exits the simulator.

Pressing `?' will again provide a quick reminder of what each letter stands for. Pressing any key
other than those listed above will return you to the main simulator screen.

Helpful hint: if you need to see more of the stack than the main simulator window shows, you can
use Dump mode to view a much larger area. The memory viewer is con�ned to the 4K address
space of the theoretical Mac-1 machine so if you specify an address larger than that, the display
will wrap around to zero.

Breakpoint Editor:

The breakpoint editor allows you to de�ne up to seven addresses where you wish the program to
temporarily stop execution. By setting a breakpoint to an address in your code and then selecting
the `Go' option from the main menu, your program will execute up to the instruction containing
the breakpoint and then return control to you. The program can then be single stepped, or another
`Go' command can be issued.

In addition to setting the address, a stop count must be speci�ed. This allows you to stop your
program after the selected address has been encountered a speci�ed number of times. For example,
you wish to stop your program after ten times through a loop so you set the address to somewhere
in the loop and the stop count to ten. If you want the program to stop the �rst time the breakpoint
is encountered, set the stop count to one.

The breakpoint editor displays the breakpoint number, the breakpoint address (in hexadecimal),
the stop count, and the current number of times the address has been encountered.

After a breakpoint is encountered, the address in the macro display is displayed with an asterisk
next to it to indicate which address contained the breakpoint.

18

Commands:

[S]: Prompts for a breakpoint number, the breakpoint address and the number of times the instruction
must be encountered to stop execution. The address must be entered in hexadecimal and the three
entries should be separated by spaces. Note: the stop count must be greater than zero for the
breakpoint to take e�ect.

[C]: Prompts for a breakpoint number to be cleared. All entries for the selected breakpoint number are
set to zero.

Known bugs:

Any location where more than single character input is required will not allow line editing. i.e., if
you type something wrong you have to live with it. This is due to a aw in the support software I
am using and I am currently trying to �nd a way around it.

5/18/92 Kevin Hildebrand

19

