1. Problem 1
 Check the solution manual.

2. Problem 2

3. Problem 3: Done in recitation.

4. Problem 4
 5
 7
 9
 10

5. Check the solution manual.
Problem 6

(6.6.) \(\Omega = \{ \text{All possible combinations of } K \text{ distinct tickets} \} \) out of the \(N \) distinct tickets

\[
|\Omega| = \binom{N}{K} = \frac{N!}{(N-K)!K!}.
\]

Since \(|\Omega| \leq \infty \), \(\Omega \) can be taken as \(\mathbb{P}(\Omega) \).

By the uniformity assumption

\[
\mathbb{P}(\{\text{single ton only}\}) = \frac{1}{|\Omega|} = \frac{(N-K)!K!}{N!}.
\]

(b) If the event of Mr. Noon buying at least one winning ticket is \(A \),

\[
\mathbb{P}(A^c) = \binom{N-W}{K} \times \frac{1}{|\Omega|} \quad \text{(the probability of Mr. Noon buying no winning tickets)}
\]

\[
= \binom{N-W}{K} \times \frac{(N-K)!K!}{N!}
\]

\[
= \frac{(N-W)!(N-K)!}{(N-W-K)!N!} \times \frac{(N-K)!K!}{N!}
\]

\[
= \frac{(N-W)!(N-K)!}{(N-W-K)!N!}
\]

\[\vdots\]

\[
\mathbb{P}(A) = 1 - \mathbb{P}(A^c)
\]

\[
= 1 - \frac{(N-W)!(N-K)!}{(N-W-K)!N!}
\]

(c) \[\mathbb{P}(A) = 1 - \frac{(N-W)(N-W-1) \ldots 2 \times 1 \times (N-K)(N-K-1) \ldots 2 \times 1}{(N-W-K)(N-W-K-1) \ldots 2 \times 1 \times N \times (N-I) \times \ldots \times 2 \times 1}
\]

\[
= 1 - \frac{(N-W)(N-W-1) \ldots x(N-W-K+1)}{N \times (N-I) \times \ldots \times (N-K+1)} \quad \text{(cancelling out common terms)}
\]
\[P(A) = 1 - \left(1 - \frac{W}{N} \right) \left(1 - \frac{W+1}{N} \right) \cdots \left(1 - \frac{W+K-1}{N} \right) \]

(\text{Dividing numerator and denominator by } N^K.)

Now, take the limit \(N \to \infty \) for fixed \(K \) and \(W \)

\[
\lim_{N \to \infty} P(A) = 1 - \lim_{N \to \infty} \left(1 - \frac{W}{N} \right) \left(1 - \frac{W+1}{N} \right) \cdots \left(1 - \frac{W+K-1}{N} \right)
\]

\[
= 1 - \frac{1 \times 1 \cdots \times 1}{1 \times 1 \cdots \times 1}
\]

\[
= 1 - 1
\]

\[
= 0
\]

Hence when \(K \) and \(W \) are fixed, as \(N \) becomes larger, the probability of purchasing at least one winning ticket becomes smaller. This is intuitive, as well, because when \(W \) is fixed, with \(N \) increasing, the proportion of winning tickets reduces.