Please work out the ten (10) problems stated below – BT refers to the text: D.P. Bertsekas and J.N. Tsitsiklis, Introduction to Probability (Second Edition), Athena Scientific (2008). Problem 1.55 (BT) refers to Problem 55 for Chapter 1 of BT (to be found at the end of Chapter 1). Show work and explain reasoning.

1. The rvs X and Y are known to be jointly continuous with a probability density function $f_{X,Y}: \mathbb{R}^2 \rightarrow \mathbb{R}^+$ given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{e^{-y}}{y} & \text{if } 0 < x < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

1.a. Show that the rvs X and Y are each of continuous type, and identify their probability distribution functions $f_X, f_Y: \mathbb{R} \rightarrow \mathbb{R}$.

1.b. Are the rvs X and Y independent? Explain.

1.c. What is the conditional distribution of the rv X given $Y = y$ for $y > 0$?

1.d. Is it easy to identify the conditional distribution of the rv Y given $X = x$ for $x > 0$? Comments welcome!

1.e. Compute

$$\mathbb{E}[X^3|Y = y], \quad y > 0.$$

2. The rvs X and Y are known to be jointly continuous with a probability density function $f_{X,Y}: \mathbb{R}^2 \rightarrow \mathbb{R}^+$ given by

$$f_{X,Y}(x,y) = \begin{cases} e^{-\frac{x}{y}} e^{-y} & \text{if } 0 < x, y < \infty \\ 0 & \text{otherwise} \end{cases}$$
2.a. Show that the rvs \(X \) and \(Y \) are each of continuous type, and identify their probability distribution functions \(f_X, f_Y : \mathbb{R} \to \mathbb{R} \).

2.b. Are the rvs \(X \) and \(Y \) independent? Explain.

2.c. Compute
\[
\mathbb{E} [X^2 | Y = y], \quad y > 0.
\]

3. The rvs \(X \) and \(Y \) are jointly continuous with a probability density function \(f_{X,Y} : \mathbb{R}^2 \to \mathbb{R}_+ \) given by
\[
f_{X,Y}(x,y) = \begin{cases}
\frac{x}{5} + cy & \text{if } 0 < x < 1, 1 < y < 5 \\
0 & \text{otherwise}
\end{cases}
\]
for some \(c > 0 \).

3.a. What is the value of \(c > 0 \)?
3.b. Are the rvs \(X \) and \(Y \) independent?
3.c. Evaluate \(\mathbb{P} [X + Y > 3] \). Recall that
\[
[X + Y > 3] = [(X, Y) \in B]
\]
where
\[
B = \{(x, y) \in \mathbb{R}^2 : x + y > 3 \}.
\]

4. The rvs \(X \) and \(Y \) are independent rvs with \(X \) (resp. \(Y \)) exponentially distributed with parameter 2 (resp. 3), respectively. With event \(A = [X + Y \leq 1] \), show that the joint conditional distribution of the pair \((X, Y)\) given \(A \) is of continuous type. Identify the joint conditional density function of the pair \((X, Y)\) given \(A \).

5. Problem 4.1 (BT)

6. Problem 4.2 (BT)

7. Problem 4.3 (BT)

8. Problem 4.4 (BT)

9. Problem 4.5 (BT)

10. Problem 4.6 (BT)