1. Consider a periodic signal \(y(t) \) with period \(T = 1 \) which is defined over one period as
\[
y(t) = 1 - 4|t| \quad \text{for } |t| \leq \frac{1}{2}
\]
(a) Derive the coefficients \(a_n \) for the Fourier Series expansion.
(b) Let \(y_N(t) \) be a truncated version of the Fourier Series defined as
\[
y_N(t) = \sum_{n=-N}^{N} a_n e^{j\omega_0 nt}.
\]
Use Matlab to plot \(y_N(t) \) for \(N = 1, 5, \) and 15.

2. Determine the Fourier series coefficients for the periodic signal shown below

3. Consider a periodic signal \(x(t) \) with period \(T = 2 \) which is defined over one period as
\[
x(t) = \exp(-t) \quad \text{for } -1 < t < 1.
\]
(a) Derive the coefficients \(a_n \) for the Fourier series expansion.
(b) Use Matlab to plot the truncated Fourier series \(x_N(t) \) for \(N = 1, 5, 15, \) and 25.

4. Consider signals \(x_1(t) \) and \(x_2(t) \) which are periodic with periods \(T_1 \) and \(T_2 \), respectively. Furthermore, \(x_1(t) \) has Fourier series coefficients \(a_n \) and \(x_2(t) \) has Fourier series coefficients \(b_n \). Define \(y(t) = \alpha x_1(t) + \beta x_2(t) \)
(a) Derive the Fourier series coefficients of \(y(t) \) if \(T_1 = T_2 = T \).
(b) What are the Fourier series coefficients of \(y(t) \) if \(T_1 = 2T_2 \).

5. In this problem, we will derive two very important properties of the continuous-time Fourier series: the multiplication property and Parseval’s relation. Consider periodic signals \(x(t) \) and \(y(t) \). Both signals have fundamental period \(T \), and Fourier series representations:
\[
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt} \quad y(t) = \sum_{k=-\infty}^{\infty} b_k e^{j\omega_0 kt}
\]
(a) Show that the Fourier series coefficients of the signal
\[
z(t) = x(t)y(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_0 kt}
\]
are given by the discrete-time convolution
\[
c_k = a_k \ast b_k = \sum_{n=-\infty}^{\infty} a_n b_{k-n}
\]
(b) If \(y(t) = x^*(t) \), express \(b_k \) in terms of \(a_k \).

(c) Use the results of parts (a) and (b) to determine the Fourier series coefficients of \(|x(t)|^2 \) in terms of the Fourier series coefficients of \(x(t) \).

(d) Use the results of part (c) to prove that
\[
\frac{1}{T} \int_T |x(t)|^2 \, dt = \sum_{k=-\infty}^{\infty} |a_k|^2
\]

6. Consider a real periodic signal \(x(t) \) with period \(T \) and Fourier series representation:
\[
x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt}
\]

(a) Determine the Fourier series coefficients for the even part, i.e. \(x_e(t) = \mathcal{E} \{ x(t) \} \).

(b) Determine the Fourier series coefficients for the odd part, i.e. \(x_o(t) = \mathcal{O} \{ x(t) \} \).

7. (OW 3.24) Let \(x(t) \) be a periodic signal with fundamental period \(T = 2 \) and Fourier series coefficients \(a_k \)
\[
x(t) = \begin{cases}
 t, & 0 \leq t \leq 1 \\
 2 - t, & 1 \leq t \leq 2
\end{cases}
\]

(a) Determine the value for \(a_0 \).

(b) Determine the Fourier series representation for \(y(t) = \frac{d}{dt} x(t) \).

(c) Use the result of part (b) along with the differentiation property of the CTFS to determine the Fourier series coefficients of \(x(t) \).

8. (OW 3.26) Let \(x(t) \) be a periodic signal whose Fourier series coefficients are given by
\[
a_k = \begin{cases}
 2, & k = 0 \\
 \left(\frac{1}{2} \right)^{|k|}, & \text{otherwise}
\end{cases}
\]

Use Fourier series properties to answer the following questions:

(a) Is \(x(t) \) real?

(b) Is \(x(t) \) even?

(c) Is \(dx(t)/dt \) even?